精英家教网 > 初中数学 > 题目详情
18.解不等式组:$\left\{\begin{array}{l}{x-1>2}\\{2+x≥2(x-1)}\end{array}\right.$,并将其解集用数轴表示出来.

分析 根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.

解答 解:$\left\{\begin{array}{l}{x-1>2①}\\{2+x≥2(x-1)②}\end{array}\right.$,
由①得:x>3;
由②得:x≤4,
则不等式组的解集为3<x≤4.
在数轴上表示不等式组的解集是:

点评 本题主要考查对解一元一次不等式(组),不等式的性质,在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.【问题情境】
如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
【探究展示】
(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
【拓展延伸】
(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.通常情况下,若y是关于x的函数,则y与x的函数关系式可记作y=f(x).如y=$\frac{1}{2}$x+3记作f(x)=$\frac{1}{2}$x+3,当x=2时,f(2)=$\frac{1}{2}$×2+3=4.下列四个函数中,满足f(a+b)=f(a)+f(b)的函数是(  )
A.y=$\frac{\sqrt{3}}{x}$B.y=-2x-6C.y=3xD.y=$\frac{1}{2}{x}^{2}+3x+4$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,A(3,0),B(0,6),BC⊥AB且D为AC中点,双曲线y=$\frac{k}{x}$过点C,则k=-$\frac{27}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:|-3|+(π+1)0-$\sqrt{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如果一个多边形的内角和等于720度,那么这个多边形的边数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,二次函数y=-$\frac{1}{3}$x2+bx+c的图象经过点A(4,0)和点B(-6,0),直线y=$\frac{4}{3}$x+4与x轴、y轴交于点E、F.
(1)求这个二次函数的解析式;
(2)若K是△EFO的内心,求证:∠KFO+∠KEO=45°;
(3)若在x轴上有一点D满足∠DFA=$\frac{1}{2}$∠EFO,求点D的坐标;
(4)若M为x轴上方抛物线上一点,过点M作y轴的平行线交直线EF于点N,点P是点N关于直线MF的对称点,是否存在点M,使得点P落在y轴上?若存在,直接写出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在数学活动中,我们已经学习了四点共圆的条件:如果一个四边形对角互补,那么这个四边形的四个顶点在同一个圆上,简称“四点共圆”.如图,已知四边形ABCD,AD=4,CD=3,AC=5,cos∠BCA=sin∠BAC=$\frac{1}{2}$,求∠BDC的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,点A、B、C、D、E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH=$\sqrt{10}$,CH=5$\sqrt{2}$.
(1)求证:AH是⊙O的切线;
(2)若点D是弧CE的中点,且AD交CE于点F,求EF的长.

查看答案和解析>>

同步练习册答案