精英家教网 > 初中数学 > 题目详情

如图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2

证明:∵AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,
∴Rt△AFE≌Rt△ABE(AAS),
∴AF=AB.①
在Rt△AGF中,∵∠FAG=45°,
∴AG=FG,
∴AF2=AG2+FG2=2FG2.②
由①,②得AB2=2FG2
分析:注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,进而证明△ABE≌△AFE,即可得AF=AB,根据AF2=AG2+FG2=2FG2即可解题.
点评:本题考查了正方形各边长相等、各内角相等的性质,考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证Rt△AFE≌Rt△ABE是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、九年级甲、乙两班学生参加电脑知识竞赛,得分均为正整数,将学生成绩进行整理后分成5组,创建频率分布直方图,如图所示,已知图中从左至右的第一、第三、第四、第五小组的频率分别为0.3;0.15;0.1;0.05,且第三小组的频数为6.
(1)求第二小组的频率,并补全频率分布直方图;
(2)求这两个班参赛的学生人数是多少?
(3)这两个班参赛学生成绩的中位数落在第几小组内?(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知A点的坐标为(6,0),B是y轴正半轴上的一动点,直线AB交直线y=
1
2
x
于点C,矩形ADEF的顶点D、E分别在直线y=
1
2
x
和直线AB上,顶点F在x轴上.
(1)若点B的坐标为(0,4).
①求直线AB所表示的函数关系式;
②求△OAC的面积;
③求矩形ADEF的边DE与AD的长;
(2)若矩形ADEF是正方形,求B点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄石)如图所示,已知A(
1
2
,y1),B(2,y2)为反比例函数y=
1
x
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知边长为a的等边三角形ABC,两顶点A,分别在x轴,y轴的正半轴上滑动,连接OC,则OC长的最大值是
3
+1
2
a
3
+1
2
a

查看答案和解析>>

科目:初中数学 来源: 题型:

数学家高斯在读小学二年级时,老师给出了这样一道题:1+2+3+…+100=?高斯很快做出了答案,他的计算方法是:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=50×101=5 050.根据此方法,试探究:有一堆堆放整齐的钢管其主(正)视图如图所示,已知最下面一层有钢管50根,最上面一层有4根,则共有钢管
1242
1242
根.

查看答案和解析>>

同步练习册答案