【题目】在平面直角坐标系xOy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆,若一次函数y=kx+b的图象过点A(﹣1,0)且与⊙P相切,则k+b的值为 .
【答案】±
【解析】解:根据题意画出相应的图形,如图所示:
当直线AB与圆P相切,设切点为B点,且切点B在第一象限时,
连接PB,由AB为圆P的切线,得到BP⊥AB,
又∵A(﹣1,0),P(3,0),
∴OA=1,OP=3,又BP=2,
则AP=OA+OP=1+3=4,
在Rt△ABP中,BP= AP,
可得出∠BAP=30°,
在Rt△ACO中,OA=1,∠BAP=30°,
∴tan∠BAP=tan30°= =OC,
∴OC= ,即C(0, ),
设直线AC的解析式为y=kx+b,将A和C的坐标代入得:
,
解得: ,
∴k+b= ;
当直线AB与圆P相切时,切点B在第四象限时,同理得到k=b=﹣ ,
可得k+b=﹣ ,
综上,k+b=± .
所以答案是:± .
【考点精析】关于本题考查的确定一次函数的表达式和切线的性质定理,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】看图说故事. 请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:
(1)指出变量x和y的含义;
(2)利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元.种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入,考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:
(1)今年老王种粮可获得补贴多少元?
(2)根据图象,求y与x之间的函数关系式;
(3)若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入W(元)与种粮面积x(亩)之间的函数关系式.当种粮面积为多少亩时,总收入最高?并求出最高总收入.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】星期六,小亮从家里骑自行车到同学家去玩,然后返回,图是他离家的路程y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法不一定正确的是( )
A.小亮到同学家的路程是3千米
B.小亮在同学家逗留的时间是1小时
C.小亮去时走上坡路,回家时走下坡路
D.小亮回家时用的时间比去时用的时间少
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E,F,连接EF.
(1)求证:PF平分∠BFD;
(2)若tan∠FBC= ,DF= ,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com