精英家教网 > 初中数学 > 题目详情
精英家教网如图,一次函数y=ax+b与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于点B(0,-4),且OA=BA,△AOB的面积为6,求两函数的解析式.
分析:分析:要确定两个函数的解析式,关键是要求出点A的坐标,求点的坐标的常用方法是过这点作坐标轴的垂线,因为OB=BA,故考虑过点A作y轴的垂线.同时还要注意点A在第三象限,纵、横坐标均为负.
解答:精英家教网解:作AD⊥y轴于D,
∵OA=BA,
∴OD=BD=2,
又∵△AOB的面积为6,
∴AD×4÷2=6,
∴AD=3.
而点A在第三象限内,
∴点A的坐标为A(-3,-2),
∵点A在函数y=kx的图象上,
-3k=-2?k=
2
3

∴所求正比例函数为y=
2
3
x

∵直线y=ax+b经过A、B两点,
b=-4
-3a+b=-2

解得
a=-
2
3
b=-4

∴所求一次函数的解析式为y=-
2
3
x-4
点评:注意:①求点的坐标的方法是先求出这点到两坐标轴的距离,然后根据这点在坐标系中的位置写出这点的坐标.
②以后学了等腰三角形的性质后,作垂线后可直接得到OD=BD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案