精英家教网 > 初中数学 > 题目详情
(2006•凉山州)如图,BE是△ABC的外接⊙O的直径,CD是△ABC的高.
(1)求证:
(2)已知:AB=11,AD=3,CD=6,求⊙O的直径BE的长.

【答案】分析:(1)易得,∠BCE=∠ADC=90°,∠A=∠E,故有△ADC∽△ECB,∴CD:BC=AC:BE;
(2)由勾股定理求得AC,BC后,利用△ADC∽△ECB的性质求得BE的值.
解答:(1)证明:连接EC,
∵BE是直径,∴∠BCE=∠ADC=90°,
又∵A=∠E,∴△ADC∽△ECB,
∴CD:BC=AC:BE.

(2)解:由题意知,BD=11-3=8,
在Rt△ACD中,由勾股定理知,AC==3
在Rt△BCD中,由勾股定理知,BC==10,
由(1)知,CD:BC=AC:BE,
∴BE==5
点评:本题利用了勾股定理,直径对的圆周角是直角,圆周角定理,相似三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2006•凉山州)如图所示,分别按A、B两种方法用钢丝绳捆扎圆形钢管的截面图:设A、B两种方法捆扎所需的绳子的长分别为a、b(不计接头部分),则a、b的大小关系为:a
=
=
b.

查看答案和解析>>

科目:初中数学 来源:2011年山东省中考数学模拟试卷(三)(解析版) 题型:解答题

(2006•凉山州)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2006•凉山州)如图,直线y=-+8与x轴、y轴分别交于A、B两点,M为OB上一点,若将△ABM沿AM折叠,点B恰好落在x轴上的B′处,则直线AM的解析式为______.

查看答案和解析>>

科目:初中数学 来源:2010年山东省青岛市中考数学模拟试卷(解析版) 题型:解答题

(2006•凉山州)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

查看答案和解析>>

科目:初中数学 来源:2006年四川省凉山州中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•凉山州)为预防“流感“,某单位对办公室进行“药熏消毒”.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此时办公室内每立方米空气中含药量为6毫克,据以上信息:
(1)分别求药物燃烧时和燃烧后,y与x的函数关系式;
(2)研究表明,当空气中含药量低于1.6毫克/立方米时,工作人员才能回到办公室,那么从消毒开始,经多长时间,工作人员才可以回到办公室?

查看答案和解析>>

同步练习册答案