精英家教网 > 初中数学 > 题目详情
5.计算$\frac{a^2}{{{a^2}+2a}}×\frac{{{a^2}-4}}{a-2}$=a.

分析 原式变形后,约分即可得到结果.

解答 解:原式=$\frac{{a}^{2}}{a(a+2)}$•$\frac{(a+2)(a-2)}{a-2}$=a,
故答案为:a

点评 此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图所示,在锐角三角形ABC中,AD=12,AC=13,CD=5,BC=14,则AB的长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若等腰直角三角形的外接圆半径的长为$\sqrt{2}$,则其内切圆半径的长为(  )
A.$2\sqrt{2}-1$B.$2\sqrt{2}-2$C.$2-\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知圆O中,AB=CD,连结AC、BD.求证:AC=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解下列方程
(1)3(x-4)=12
(2)$\frac{x+1}{2}-\frac{2-3x}{6}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先阅读下面信息,再完成后面的问题:
阅读:解一元二次不等式x2-5x>0
解:把x2-5x分解因式得x2-5x=x(x-5)
又由于x2-5x>0,所以x(x-5)>0.依据“两数相乘,同号得正”乘法法则得:
(1)$\left\{\begin{array}{l}{x>0}\\{x-5>0}\end{array}\right.$(2)$\left\{\begin{array}{l}{x<0}\\{x-5<0}\end{array}\right.$
解(1)得:x>5,解(2)得:x<0,所以x2-5x>0的解集是x>5或x<0
问题解决:请利用以上信息中获得的方法求不等式x2-3x<0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、
OD,AB的中点.下列结论:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;
④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是(  )
A.①②④B.①③⑤C.③④⑤D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,已知菱形ABCD的边长为2,∠A=30°,点P与点Q同时从点A出发,点P沿AB运动到点B停止,点Q沿AD→DC→CB运动到点B停止,若它们运动的速度都是每秒1个单位,当点P、Q出发t秒后,△APQ的面积为S(平方单位),则S关于t的函数图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知,如图,在△ABC中,已知AB=AC=5cm,BC=6cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,且QD⊥BC,与AC,BC分别交于点D,Q;当直线QD停止运动时,点P也停止运动.连接PQ,设运动时间为t(0<t<3)s.解答下列问题:
(1)当t为何值时,PQ∥AC?
(2)设四边形APQD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APQD:S△ABC=23:45?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案