精英家教网 > 初中数学 > 题目详情
如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.

(1)求线段OD的长;
(2)若tan∠C=,求弦MN的长.
(1)5;(2)4.

试题分析:(1)根据CD∥AB可知,△OAB∽△OCD,再根据相似三角形的对应边成比例即可求出OD的长;
(2)过O作OE⊥CD,连接OM,由垂径定理可知ME=MN,再根据tan∠C=可求出OE的长,利用勾股定理即可求出ME的长,进而求出答案.
试题解析:(1)∵CD∥AB,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,即,又OA=3,AC=2,∴OB=3,∴,∴OD=5;
(2)过O作OE⊥CD,连接OM,则ME=MN,∵tan∠C=,即=,∴设OE=,则CE=,在Rt△OEC中,OC2=OE2+CE2,即,解得,在Rt△OME中,OM2=OE2+ME2,即,解得ME=2.∴MN=4,∴弦MN的长为4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,以AD为弦作⊙O,使圆心O在AB上.

(1)用直尺和圆规在图中作出⊙O(不写作法,保留作图痕迹) ;
(2)求证:BC为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,AB为⊙O的直径,C、D为⊙O上两点,弦AC=,△ACD为等边三角形,CD、AB相交于点E.

(1)求∠BAC的度数;
(2)求⊙O的半径;
(3)求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.

(1)求证:CD是⊙O的切线;
(2)若CB=2,CE=4,①求圆的半径;②求DE、DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70o,∠C=50o,那么sin∠AEB的值为__ __.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )

A.55°  B.60°   C.65°    D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知扇形的圆心角为120°,它所对应的弧长为10π,则此扇形的半径是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,三角板中,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为__________.

查看答案和解析>>

同步练习册答案