精英家教网 > 初中数学 > 题目详情
判断:当m=11时,2m为奇数.     (    )

答案:F
解析:


提示:

22为偶数


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系内,梯形OABC的顶点坐标分别是:A(3,4),B(8,4),C(11,0精英家教网),点P(t,0)是线段OC上一点,设四边形ABCP的面积为S.
(1)求梯形的高BE及S与t的函数关系.
(2)当S=20时,试判断四边形ABCP的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为
锐角
锐角
三角形;当△ABC三边分别为6、8、11时,△ABC为
钝角
钝角
三角形.
(2)猜想,当a2+b2
c2时,△ABC为锐角三角形;当a2+b2
c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
当a>0且x>0时,因为(
x
-
a
x
)2
≥0,所以x-2
a
+
a
x
≥0,从而x+
a
x
2
a
(当x=
a
时取等号).设y=x+
a
x
(a>0,x>0)
,由上述结论可知:当x=
a
时,y有最小值为2
a

直接应用:已知y1=x(x>0)与y2=
1
x
(x>0)
,则当x=
1
1
时,y1+y2取得最小值为
2
2

变形应用:已知y1=x+1(x>-1)与y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得该最小值时相应的x的值.
实战演练:
在平面直角坐标系中,点A(-3,0),点B(0,-2).点P是函数y=
6
x
在第一象限内图象上的一个动点,过P点作PC垂直于x轴,PD垂直于y轴,垂足分别为点C、D.设点P的横坐标为x,四边形ABCD的面积为S.
(1)求S和x之间的函数关系;
(2)求S的最小值,判断此时的四边形ABCD是何特殊的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
对于任意正实数a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,
∴a+b≥2
ab
,只有当a=b时,等号成立.
结论:在a+b≥2
ab
(a、b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p

(1)根据上述内容,回答下列问题:
若m>0,只有当m=
1
1
时,m+
1
m
有最小值
2
2

(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线y=
12
x
(x>0)图象上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值.
(3)判断此时四边形ABCD的形状,说明理由.

查看答案和解析>>

同步练习册答案