精英家教网 > 初中数学 > 题目详情
如图1,点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.
(1)判断CN、DM的数量关系与位置关系,并说明理由;
(2)如图2,设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形.
分析:(1)根据正方形的四条边都相等可得AD=DC,根据中点定义可得AM=DN,然后利用“边角边”证明△AMD和△DNC全等,根据全等三角形对应边相等可得CN=DM,全等三角形对应角相等可得∠CND=∠AMD,然后推出∠CND+∠NDM=90°,从而得到CN⊥DM;
(2)延长DM、CB交于点P,然后利用“角角边”证明△AMD和△BMP全等,根据全等三角形对应角相等以及正方形的四条边都相等可得BP=AD=BC,再根据直角三角形斜边上的中线等于斜边的一半可得BH=BC,从而得证.
解答:证明:(1)CN=DM,CN⊥DM.
理由如下:∵点M、N分别是正方形ABCD的边AB、AD的中点,
∴AM=DN,AD=DC,∠A=∠CDN=90°,
在△AMD和△DNC中,
AM=DN
∠A=∠CDN=90°
AD=DC

∴△AMD≌△DNC(SAS),
∴CN=DM,∠CND=∠AMD,
∴∠CND+∠NDM=∠AMD+∠NDM=90°,
∴CN⊥DM,
∴CN=DM,CN⊥DM;

(2)如图,延长DM、CB交于点P,
∵AD∥BC,
∴∠MPC=∠MDA,∠A=∠MBP,
在△AMD和△BMP中,
∠MPC=∠MDA
∠A=∠MBP
MA=MB

∴△AMD≌△BMP(AAS),
∴BP=AD=BC,
∵∠CHP=90°,
∴BH=BC,
即△BCH是等腰三角形.
点评:本题考查了正方形的性质,全等三角形的判定与性质,以及等腰三角形的判定,比较简单,熟记正方形的四条边都相等,四个角都是直角,找出三角形全等的条件是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式.
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

8、△ABC与平行四边形DEFG如图放置,点D,G分别在边AB,AC上,点E,F在边BC上.已知BE=DE,CF=FG,则∠A的度数(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据
SAS
SAS
,易证△AFG≌
△AEF
△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系
∠B+∠D=180°
∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南开区二模)如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.
(1)求点A的坐标:
(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;
(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值
2
3
2
3
(直接写结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC的中点.

(1)如图,当点D,E分别在AC,AB上时,求证:△BMD为等腰直角三角形;
(2)如图,将图中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时问题(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明.

查看答案和解析>>

同步练习册答案