精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形 的顶点 的坐标为 ,动点 从原点 出发,以每秒 个单位的速度沿折线 运动,到点 时停止,同时,动点 从点 出发,以每秒 个单位的速度在线段 上运动,当一个点停止时,另一个点也随之停止.在运动过程中,当线段 恰好经过点 时,运动时间 的值是

【答案】2或5
【解析】设直线 的方程为

∵矩形 的顶点 的坐标为

①当点 在线段 上,即 时,

如图,

∵直线 经过点

.解得

②当点 在线段 上,即 时,

如图,

∵直线 经过点

,方程组无解.

③当直线 轴时,即 时,该直线 也经过点 ,此时

综上所述, 的值是


【考点精析】掌握一次函数的图象和性质是解答本题的根本,需要知道一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.
(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)

(2)如图2,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;

(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P(x﹣3,2x+4)在x轴上,则点P的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 P(﹣73)是由点M先向左平移动3个单位,再向下平移动3个单位而得到,则M的坐标为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是(
A.p=0,q=0
B.p=3,q=1
C.p=﹣3,q=﹣9
D.p=﹣3,q=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+1经过A(-1,0),B(1,1)两点.

(1)求该抛物线的解析式;

(2)阅读理

在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1l2,则k1·k2=-1.

解决问题:

若直线y=3x-1与直线y=mx+2互相垂直,求m的值;

是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 的一边 为平面镜, ,在 上有一点 ,从 点射出一束光线经 上一点 反射,反射光线 恰好与 平行,则 的度数是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国魏晋时期的数学家刘徽创立了割圆术,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率的近似值.设半径为的圆内接正边形的周长为,圆的直径为.如右图所示,当时,,那么当时, .(结果精确到,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下列各组数据为三角形三边,能构成直角三角形的是(

A. 4m,8m,7m B. 2m,2m,2m C. 2m,2m,4m D. 13m,12m,5m

查看答案和解析>>

同步练习册答案