【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.
(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)
(2)如图2,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是 .
【答案】
(1),(5,3),(3,5)
(2)解:∵四边形ABCD是正方形,
∴AB=BC∠A=∠ABC=90°,
∴∠EAF+∠EBC=90°,
∵BE⊥CF,
∴∠EBC+∠BCF=90°,
∴∠EBF=∠BCF,
∴△ABE≌△BCF,
∴BE=CF,
∴四边形BCEF是准矩形;
(3) ; ;
【解析】(1)根据勾股定理求出矩形对角线的长即可;(2)根据正方形的性质得到四边相等、四角相等,得到△ABE≌△BCF,得到对应边相等,得到四边形BCEF是准矩形;(3)根据已知条件和特殊角的函数值,再由勾股定理求出这个准矩形的面积.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等.
科目:初中数学 来源: 题型:
【题目】点A、B、C为直线l上三点,点P为直线l外一点,且PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离为( )
A.2cmB.3cmC.小于3cmD.不大于3cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为( )
A.b=3,c=﹣1
B.b=﹣6,c=2
C.b=﹣6,c=﹣4
D.b=﹣4,c=﹣6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵树分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是( )
A.3,2
B.2,3
C.2,2
D.3,3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A(﹣3,﹣6)向上平移3个单位,再向左平移2个单位到点B,则点B的坐标为( )
A.(0,﹣2)B.(﹣5,﹣8)C.(﹣5,﹣3)D.(0,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形 的顶点 的坐标为 ,动点 从原点 出发,以每秒 个单位的速度沿折线 运动,到点 时停止,同时,动点 从点 出发,以每秒 个单位的速度在线段 上运动,当一个点停止时,另一个点也随之停止.在运动过程中,当线段 恰好经过点 时,运动时间 的值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com