精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是
 
分析:根据平行线分线段成比例首先得出BD:BC=DE:AC=BE:AB=2:3,即可得出S△BDE:S△ABC=4:9,再利用△BDE和△CDE的面积之比为2:1得出△BDE的面积为:28,△FDC和△CDE的面积之比为3:1,即可得出答案.
解答:方法一:
精英家教网解:连接CE,因为BD:CD=2:1,所以△BDE和△CDE的面积之比为2:1,
又因为DE∥AC,
BD
BC
=
2
3

∴S△BDE:S△ABC=4:9,
又因为△ABC的面积是63,
∴△BDE的面积为:28,
所以△CDE的面积为14,
因为FE:ED=2:1,所以△FDC和△CDE的面积之比为3:1
故答案为:42.

方法二:解:作MW⊥BC,AN⊥BC,垂足分别为W,N.
∵BD:CD=2:1,DE∥AC,
∴BE:AE=2:1,
∴BD:BC=DE:AC=BE:AB=2:3,精英家教网
∴S△BDE:S△ABC=4:9,
∴S△BDE=
4
9
×63=28,
∵FE:ED=2:1=4:2,
∴EF:AC=4:3,
∴S△MEF:S△AMC=16:9,
∴EM:AM=4:3,
假设EM=4x,AM=3x,BE=
2
3
AB=2AE=2(EM+AM)=14x,
∴BM:AM=18x:3x=18:3,
∴MW:AN=BM:AB=18:21=6:7,
∴S△BMC:S△ABC=
1
2
BC•WM:
1
2
BC•AN=WM:AN=6:7,
∵S△ABC=63,
∴S△BMC=54,
∴S△AMC=63-54=9,
∵S△MEF:S△AMC=16:9,
∴S△MEF=16,
∵S△BDE=
4
9
×63=28,
∴S四边形MEDC=63-9-28=26,
∴△CDF的面积是:26+16=42.
故答案为:42.
点评:此题主要考查了平行线分线段成比例定理、三角形面积和相似三角形面积比与相似比的关系等知识,根据已知△FDC和△CDE的面积之比为3:1是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为
 
,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出
3
4
+
3
42
+
3
43
+…+
3
4n
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为
2
,且AB=AC,将△ABC沿CA方向平移CA长度得到△EFA.
(1)试判断四边形BAEF的形状,并说明理由;
(2)若∠BEC=22.5°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,△ABC的面积为1,若把△ABC的各边分别延长一倍,得到一个新的△DEF,则S△DEF=
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2,B2,C2,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过
4
4
次操作.

查看答案和解析>>

同步练习册答案