精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.
(1)求点A,B的坐标;
(2)若点C(-2,2),求△BOC的面积;
(3)点P是第一,三象限角平分线上一点,若S△ABP=数学公式,求点P的坐标.

解:(1)∵OB=OA=3,
∴A,B两点分别x轴,y轴的正半轴上,
∴A(3,0),B(0,3).
(2)S△BOC=OB•|xC|=×3×2=3.
(3)∵点P在第一,三象限的角平分线上,
∴设P(a,a).
∵S△AOB=OA•OB=
∴点P在第一象限AB的上方或在第三象限AB的下方.
当P1在第一象限AB的上方时,
=+-S△AOB=OA•+OB•-OA•OB
•3a+•3a-×3×3=
∴a=7,
∴p1(7,7).
当P2在第三象限AB的下方时,
=++S△AOB=OA•+OB•+OA•OB.
•3a+×3×3=
∴a=-4.
∴P2(-4,-4).
∴P(7,7)或P(-4,-4).

分析:(1)根据A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3可求出A,B的坐标.
(2)找出三角形的底和高,根据三角形的面积可求出解.
(3)根据点P在象限角平分线上的特点和三角形的面积可求出P点的坐标.
点评:本题考查了一次函数的应用,正比例函数的性质,点的坐标以及三角形的面积等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案