【题目】如图,甲船从A处起以15海里/小时的速度向正北方向航行,这时乙船从A的正东方向20海里的B处以20海里/小时的速度向正西方向航行.
(1)多长时间后,两船相距15海里?
(2)多长时间后,两船的距离最小?最小距离是多少?
【答案】(1)1小时或小时后,两船相距15海里;(2)小时后,两船的距离最小,最小距离是12海里.
【解析】
(1)可设x小时后,两船相距15海里,表示出AC、AB的长度,利用勾股定理建立方程即可;
(2)可设x小时后,两船相距y海里,由(1)可得到y于x的二次函数关系式,再把关系式配方可得到多长时间后,两船的距离最小;并求出最小距离即可.
(1)设x小时后,两船相距15海里,
根据题意,得(15x)2+(20﹣20x)2=152,
解得,x1=1,x2=,
经检验,它们均符合题意
答:1小时或小时后,两船相距15海里;
(2)设x小时后,两船相距y海里.
根据题意,得y2=(15x)2+(20﹣20x)2,
=625x2﹣800x+400,
=(25x﹣16)2+144≥144
所以,当x=时,y2有最小值144,则y的最小值为12,
答:小时后,两船的距离最小,最小距离是12海里.
科目:初中数学 来源: 题型:
【题目】探索规律:下列图案是山西晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,随着基本图案的增加所贴剪纸“○”的总个数也在发生变化.
(1)填写下表:
第个图案 | 1 | 2 | 3 | 4 | …… |
“○”的总个数 | …… |
(2)请你写出第个图案中“○”的总个数与之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解我市中学生跳绳活动开展的情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制成如下的两个不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)本次共抽查了多少名学生?请补全频数分布直方图;
(2)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀;
(3)请你根据以上信息,对我市开展的学生跳绳活动情况谈谈自己的看法或建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为24m的篱笆,围成长方形的花圃,且花圃的一边为墙体(墙体的最大可用长度为20m)。
设花圃的面积为AB的长为xm.
(1)求y与x函数关系式,并写出x的取值范围;
(2)x为何值时,y取得最大值?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是( )
A. (6,4) B. (4,6) C. (5,4) D. (4,5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为5的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
(3)如图3,A、B、C是小正方形的顶点,求∠ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D回到点A,设点P的运动时间为t秒。
(1)当t=3秒时,求△ABP的面积;
(2)当t为何值时,点P与点A的距离为5cm?
(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三角形是直角三角形,且AP是斜边。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com