精英家教网 > 初中数学 > 题目详情

已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=数学公式OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由;
(2)若D为⊙O上一点,∠ACD=45°,AC=数学公式,求扇形OAC的面积.

解:(1)∵OC=BC,AC=OB
∴OC=BC=AC=OA
∴△OAC是正三角形
∴∠OAC=∠OCA=60°
∴∠ACB=120°
∵AC=BC
∴∠CAB=30°
∴∠OAB=90°
∴直线AB与⊙O相切.

(2)利用扇形面积公式可得S==
分析:(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以两直线相切;
(2)利用扇形的面积公式求即可.
点评:此题主要考查学生对切线的判定及扇形的面积公式的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•东城区)已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.
(1)求证:BD=BE;
(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC•AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

同步练习册答案