精英家教网 > 初中数学 > 题目详情
17.如图,正方形OABC的各顶点A、B、C的坐标如图,则点B坐标是(2,2),点C的坐标是(2,0).

分析 根据正方形的性质即可得出结论.

解答 解:∵正方形的边长为2,
∴C(2,0),B(2,2).
故答案为:(2,2),(2,0).

点评 本题考查的是坐标与图形性质,熟知正方形的各边都相等是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.解方程:2x2+4x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.若一个多边形的内角和是三角形内角和的4倍,求这个多边形的边数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.【回顾】我们学习了三角形的全等,知道了判定两个三角形全等的基本事实有“SAS”、“ASA”、“SSS”,以及由基本事实得到的推论“AAS,我们还得到一个定理“HL”,下面对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【思考】
我们将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【探究】

(1)第一种情况:当∠B是直角时,△ABC与DEF.是否全等?全等,如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.
(2)第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC,∠DEF都是钝角,求证:△ABC≌△DEF(请你继续完成证明过程).
证明:如图,过C作CG⊥AB交AB的延长线于点G,过F作FH⊥DE交DE的延长线于点H,
(3)第三种情况:当∠B是锐角时,即在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角.△ABC和△DEF是否全等,请你用尺规在图③中作出△DEF,直接写出你的结论.
(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算或解下列方程:
(1)sin245°-cos60°+tan60°•cos230°
(2)$\frac{1}{sin45°}$-|1-$\sqrt{2}$|+2-1
(3)2x2-2x-5=0;
(4)(2x-1)2-2(2x+1)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.2014年2月12日17时9分,新疆和田地区于田县(北纬36.1度,东经82.5度)发生7.3级地震,震源深度12千米.某部队接到上级命令,乘车前往灾区救援,前进一段时间后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离s(千米)与时间t(小时)间函数关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,∠2=50°,则∠3的度数是(  )
A.50°B.30°C.20°D.15°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD折叠后,点C落在E处,连接BE,若BE=4,则BC长=4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.线段AB=10cm,C为AB上的一点(AC>BC),若AC=6.2cm时,点C为AB的黄金分割点(精确到0.1cm)

查看答案和解析>>

同步练习册答案