精英家教网 > 初中数学 > 题目详情

【题目】如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=

【答案】
【解析】解:连接OM,OM的反向延长线交EF于点C,如图, ∵直线MN与⊙O相切于点M,
∴OM⊥MN,
∵EF∥MN,
∴MC⊥EF,
∴CE=CF,
∴ME=MF,
而ME=EF,
∴ME=EF=MF,
∴△MEF为等边三角形,
∴∠E=60°,
∴cos∠E=cos60°=
故答案为:

连接OM,OM的反向延长线交EF于点C,由直线MN与⊙O相切于点M,根据切线的性质得OM⊥MN,而EF∥MN,根据平行线的性质得到MC⊥EF,于是根据垂径定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易证得△MEF为等边三角形,所以∠E=60°,然后根据特殊角的三角函数值求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:(π﹣2017)0+6sin60°﹣|5﹣ |﹣( 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知向量 为实数.
(1)若 ,求t的值;
(2)若t=1,且 ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:x1 , x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是(
A.a=﹣3,b=1
B.a=3,b=1
C. ,b=﹣1
D. ,b=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A,B两点,与x轴交于C点,与y轴交于D点;点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2﹣10x+24=0的两个根,求直角边BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为(
A.15°
B.10°
C.20°
D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

同步练习册答案