精英家教网 > 初中数学 > 题目详情

【题目】如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2﹣10x+24=0的两个根,求直角边BC的长.

【答案】
(1)证明:DE与半圆O相切,理由为:

连接OD,BD,如图所示:

∵AB为圆O的直径,

∴∠ADB=90°,

在Rt△BDC中,E为BC的中点,

∴DE=BE= BC,

∴∠EBD=∠EDB,

∵OB=OD,

∴∠OBD=∠ODB,

又∵∠ABC=90°,即∠OBD+∠EBD=90°,

∴∠EDB+∠ODB=90°,即∠ODE=90°,

∴DE为圆O的切线


(2)解:方程x2﹣10x+24=0,

因式分解得:(x﹣4)(x﹣6)=0,

解得:x1=4,x2=6,

∵AD、AB的长是方程x2﹣10x+24=0的两个根,且AB>AD,

∴AD=4,AB=6,

∵AB是直径,

∴∠ADB=90°,

在Rt△ABD中,根据勾股定理得:BD= =2

∵△ABD∽△ACB,

= ,即 =

∴BC=3


【解析】(1)DE与半圆O相切,理由为:连接OD,BD,由AB为半圆的直径,根据直径所对的圆周角为直角得到一个角为直角,可得出三角形BDC为直角三角形,又E为斜边BC的中点,利用中点的定义及斜边上的中线等于斜边的一半,得到ED=EB,利用等边对等角得到一对角相等,再由OD=OB,利用等边对等角得到一对角相等,根据∠EBO为直角,得到∠EBD与∠OBD和为90°,等量代换可得出∠ODE为直角,即DE与OD垂直,可得出DE为圆O的切线,得证;(2)利用因式分解法求出x2﹣10x+24=0的解,再根据AB大于AD,且AD和AB为方程的解,确定出AB及AD的长,在直角三角形ABD中,利用勾股定理即可求出BD的长,然后根据三角形相似即可求得BC的长.
【考点精析】本题主要考查了因式分解法和切线的判定定理的相关知识点,需要掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.

(1)猜想与计算:
邻边长分别为3和5的平行四边形是阶准菱形;已知ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出ABCD是阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是(
A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P,Q分别从A,B两点同时出发.
(1)几秒后△PBQ的面积等于8cm2
(2)几秒后以P,B,Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF. 求证:直线BE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P,Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(4,0)、(4,n),若经过点O、A的抛物线y=﹣x2+bx+c的顶点C落在边OB上,则图中阴影部分图形的面积和为

查看答案和解析>>

同步练习册答案