【题目】为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.
表1:大连市居民自来水实施阶梯水价标准情况:
阶梯 | 每户年用水量(立方米) | 水价(含污水处理费)(元/立方米) |
第一阶梯 | 0~m(含m) | a |
第二阶梯 | m~240(含240) | 4.40 |
第三阶梯 | 240以上 | 7.85 |
表2:四个家庭2017年的年用水量和缴纳水费情况:
家庭 | 小明 | 小丽 | 小斌 | 小宇 |
用水量(立方米) | 50 | 100 | 200 | 220 |
水费(元) | 162.5 | 325 | 673 | 761 |
请你根据表1、表2提供的数据回答下列问题:
(1)写出表1中的a,m的值;
(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?
【答案】(1)a=3.25,m=180;(2)她家2017年的年用水量是235立方米.
【解析】
(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m<200,从而求出a及m的值;
(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x立方米,根据共缴纳水费827元列出方程,求解即可.
(1)由题意,可得a==3.25,
根据小斌家用水200立方米(在第二阶梯),缴纳水费673元,
列出方程:3.25m+4.4(200﹣m)=673,
解得m=180.
(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元),
∵673<827<849,
∴她家2017年的年用水量在第二阶梯.
设她家2017年的年用水量是x立方米,
根据题意,得3.25×180+4.4(x﹣180)=827,
解得x=235.
答:她家2017年的年用水量是235立方米.
科目:初中数学 来源: 题型:
【题目】已知∠ACB=90°,AC=2,CB=4.点P为线段CB上一动点,连接AP,△APC与△APC′关于直线AP对称,其中点C的对称点为点C′.直线m过点A且平行于CB
(1)如图①:连接AB,当点C落在线段AB上时,求BC′的长;
(2)如图②:当PC=BC时,延长PC′交直线m于点D,求△ADC′面积;
(3)在(2)的条件下,连接BC′,直接写出线段BC′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.
(1)作出△ABC关于y轴对称的△A1B1C1;
(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;
(3)求出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁内角互补,两直线平行)
∴∠BAE= (两直线平行,内错角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (内错角相等,两直线平行)
∴∠M=∠N(两直线平行,内错角相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,A、B两点在数轴上对应的数分别为﹣12和4.
(1)直接写出A、B两点之间的距离;
(2)若在数轴上存在一点P,使得AP=PB,求点P表示的数.
(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),为直线上点,过点作射线,,将一直角三角尺()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方.
(1)若将图(1)中的三角尺绕点以每秒的速度,沿顺时针方向旋转秒,当恰好平分时,如图(2).
①求值;
②试说明此时平分;
(2)将图(1)中的三角尺绕点顺时针旋转,设,, 当在内部时,试求与的数量关系;
(3)若将图(1)中的三角尺绕点以每秒的速度沿顺时针方向旋转的同时,射线也绕点以每秒的速度沿顺时针方向旋转,如图(3),那么经过多长时间,射线第一次平分?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为1的正方形ABCD中,M,N分别为AD、BC的中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.以PQ为边长的正方形的面积等于 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com