精英家教网 > 初中数学 > 题目详情
(2012•舟山)如图,一次函数y1=kx+b的图象与反比例函数y2=
mx
的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).
(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2
分析:(1)将A、B中的一点代入y2=
m
x
,即可求出m的值,从而得到反比例函数解析式,把 A(2,3)、C(8,0)代入y1=kx+b,可得到k、b的值;
(2)根据图象可直接得到y1>y2时x的取值范围.
解答:解:(1)把 A(2,3)代入y2=
m
x
,得m=6.
把 A(2,3)、C(8,0)代入y1=kx+b,
k=-
1
2
b=4

∴这两个函数的解析式为y1=-
1
2
x+4,y2=
6
x


(2)由题意得
y=-
1
2
x+4
y=
6
x

解得
x1=6
y1=1
x2=2
y2=3

当x<0 或 2<x<6 时,y1>y2
点评:本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于(  )米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知△ABC中,∠CAB=∠B=30°,AB=2
3
,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是
4
3
π+2
3
4
3
π+2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•舟山)如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:
AG
AB
=
FG
FB
;②∠ADF=∠CDB;③点F是GE的中点;④AF=
2
3
AB;⑤S△ABC=5S△BDF
其中正确结论的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案