10£®Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÏཻÓÚµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬ÓëyÖáÏཻÓÚµãC£¨0£¬-3£©£®
£¨1£©Çó´Ë¶þ´Îº¯ÊýµÄ½âÎöʽ£®
£¨2£©ÈôÅ×ÎïÏߵĶ¥µãΪD£¬µãEÔÚÅ×ÎïÏßÉÏ£¬ÇÒÓëµãC¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬Ö±ÏßAE½»¶Ô³ÆÖáÓÚµãF£¬ÊÔÅжÏËıßÐÎCDEFµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©ÈôµãMÔÚxÖáÉÏ£¬µãPÔÚÅ×ÎïÏßÉÏ£¬ÊÇ·ñ´æÔÚÒÔA£¬E£¬M£¬PΪ¶¥µãÇÒÒÔAEΪһ±ßµÄƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öËùÓÐÂú×ãÒªÇóµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©½áÂÛËıßÐÎEFCDÊÇÕý·½ÐΣ®Èçͼ1ÖУ¬Á¬½ÓCEÓëDF½»ÓÚµãK£®Çó³öE¡¢F¡¢D¡¢CËĵã×ø±ê£¬Ö»ÒªÖ¤Ã÷DF¡ÍCE£¬DF=CE£¬KC=KE£¬KF=KD¼´¿ÉÖ¤Ã÷£®
£¨3£©Èçͼ2ÖУ¬´æÔÚÒÔA£¬E£¬M£¬PΪ¶¥µãÇÒÒÔAEΪһ±ßµÄƽÐÐËıßÐΣ®¸ù¾ÝµãPµÄ×Ý×ø±êΪ2»ò-2£¬¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©°ÑA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©´úÈëy=ax2+bx+cµÃ$\left\{\begin{array}{l}{a-b+c=0}\\{9a+3b+c=0}\\{c=-3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=-2}\\{c=-3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x-3£®

£¨2£©½áÂÛËıßÐÎEFCDÊÇÕý·½ÐΣ®
ÀíÓÉ£ºÈçͼ1ÖУ¬Á¬½ÓCEÓëDF½»ÓÚµãK£®

¡ßy=£¨x-1£©2-4£¬
¡à¶¥µãD£¨1£¬4£©£¬
¡ßC¡¢E¹ØÓÚ¶Ô³ÆÖá¶Ô³Æ£¬C£¨0£¬-3£©£¬
¡àE£¨2£¬-3£©£¬
¡ßA£¨-1£¬0£©£¬ÉèÖ±ÏßAEµÄ½âÎöʽΪy=kx+b£¬
¡à$\left\{\begin{array}{l}{-k+b=0}\\{2k+b=-3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=-1}\end{array}\right.$£¬
¡àÖ±ÏßAEµÄ½âÎöʽΪy=-x-1£®
¡àF£¨1£¬-2£©£¬
¡àCK=EK=1£¬FK=DK=1£¬
¡àËıßÐÎEFCDÊÇÆ½ÐÐËıßÐΣ¬
ÓÖ¡ßCE¡ÍDF£¬CE=DF£¬
¡àËıßÐÎEFCDÊÇÕý·½ÐΣ®

£¨3£©Èçͼ2ÖУ¬´æÔÚÒÔA£¬E£¬M£¬PΪ¶¥µãÇÒÒÔAEΪһ±ßµÄƽÐÐËıßÐΣ®

ÓÉÌâÒâµãPµÄ×Ý×ø±êΪ3»ò-3£¬
µ±y=3ʱ£¬x2-2x-3=3£¬½âµÃx=1¡À$\sqrt{7}$£¬
¿ÉµÃP1£¨1+$\sqrt{7}$£¬2£©£¬P2£¨1-$\sqrt{7}$£¬2£©£¬
µ±y=-2ʱ£¬x=0£¬¿ÉµÃP3£¨0£¬-3£©£¬
×ÛÉÏËùÊöµ±Pµã×ø±êΪ£¨1+$\sqrt{7}$£¬3£©»ò£¨1-$\sqrt{7}$£¬3£©»ò£¨0£¬-3£©Ê±£¬´æÔÚÒÔA£¬E£¬M£¬PΪ¶¥µãÇÒÒÔAEΪһ±ßµÄƽÐÐËıßÐΣ®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢Ò»´Îº¯ÊýµÄÓ¦Óá¢Õý·½ÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓôý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¶ÔÓÚy=-2£¨x-3£©2+2µÄͼÏóÏÂÁÐÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¶¥µã×÷±êΪ£¨-3£¬2£©B£®¶Ô³ÆÖáΪ£ºÖ±Ïßx=-3
C£®µ±x¡Ý3ʱyËæxÔö´ó¶ø¼õСD£®º¯ÊýµÄ×îСֵÊÇ2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¹Û²ìÏÂÁеÈʽ£º1¡Á$\frac{1}{2}$=1-$\frac{1}{2}$£¬2¡Á$\frac{2}{3}$=2-$\frac{2}{3}$£¬3¡Á$\frac{3}{4}$=3-$\frac{3}{4}$£¬¡­
£¨1£©²ÂÏ벢д³öµÚ5¸öµÈʽ5¡Á$\frac{5}{6}$=5-$\frac{5}{6}$£»µÚn¸öµÈʽn¡Á$\frac{n}{n+1}$=n-$\frac{n}{n+1}$£®
£¨2£©Ö¤Ã÷Äãд³öµÄµÈʽµÄÕýÈ·ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®°´ÒªÇóÓÿÆÑ§¼ÇÊý·¨±íʾÏÂÁи÷½üËÆÊý£º
£¨1£©1gË®ÖÐÔ¼ÓÐ33400000000000000000000¸ö·Ö×Ó£¨¾«È·µ½1000000000000000000000¸ö£©
£¨2£©µØÇòÉϵĺ£ÑóÃæ»ýԼΪ361000000km2£¨¾«È·µ½10000000km2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬E£¬F£¬G£¬H·Ö±ðΪ¾ØÐÎABCDµÄËÄÌõ±ßÉϵ͝µã£¬AE=DH=CG=FB£¬Á¬½ÓEF£¬FG£¬GH£¬HEµÃµ½ËıßÐÎEFGH£®
£¨1£©ÇóÖ¤£ºËıßÐÎEFGHΪƽÐÐËıßÐΣ»
£¨2£©Èçͼ2£¬ÈôAB=m£¬AD=n£¨m£¾n£©£¬HM¡ÍFG£¬MΪ´¹×㣬ÔòGMµÄ³¤ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬ÇóÆäÖµ£»Èô²»ÊÇ£¬ÇóÆä·¶Î§£»
£¨3£©ÈôAB=25£¬AD=15£¬ÉèAE=x£¬ËıßÐÎEFGHµÄÃæ»ýΪy£¬µ±xΪºÎֵʱ£¬y×î´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¶¨ÒåÔËËã¡°©~¡±£º¹æ¶¨x©~y=ax+by£¨ÆäÖÐa¡¢bΪ³£Êý£©£¬Èô1©~1=3£¬1©~£¨-1£©=1£¬Ôò1©~2=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÔËËã¡°*¡±£¬¹æ¶¨x*y=ax+by2£¬ÆäÖÐa¡¢bΪ³£Êý£¬ÇÒ1*2=11£¬2*1=1£¬Ôò2*3=£¨¡¡¡¡£©
A£®-3B£®5C£®25D£®29

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚÖ±½ÇÈý½ÇÐÎABCÖУ¬¡ÏC=90¡ã£¬AB=10£¬AC=8£¬µãE£®F·Ö±ðΪACºÍABµÄÖе㣬ÔòEF=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¼ÆË㣺-$\sqrt{36¡Á3}$=-6$\sqrt{3}$£»$\sqrt{\frac{-169}{-9}}$=$\frac{13}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸