精英家教网 > 初中数学 > 题目详情
19.按要求用科学记数法表示下列各近似数:
(1)1g水中约有33400000000000000000000个分子(精确到1000000000000000000000个)
(2)地球上的海洋面积约为361000000km2(精确到10000000km2

分析 精确到哪一位就是对哪一位后面的数字进行四舍五入,如果精确到十位以前的数位时应首先把这个数用科学记数法表示,再精确到所要求的数位.

解答 解:(1)33400000000000000000000精确到1000000000000000000000,为3.3×1022
(2)361000000精确到10000000,为3.6×108

点评 本题考查了用科学记数法与有效数字.精确到十位以前的数位时应首先把这个数用科学记数法表示,这一点是经常考查的知识点,需要识记.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.若$\sqrt{3}$的整数部分是a,小数部分是b,则a-b=2-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,点A在反比例函数y=$\frac{m-3}{x}$的图象上,连接OA,作AB⊥x轴,垂足为B,点A的坐标为(-2,n),OA=2$\sqrt{2}$.
(1)求m的值;
(2)若点C(a,y1),D(a+2,y2)(a>0)在这个函数的图象上,试比较y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.用加减法解方程组:
(1)$\left\{\begin{array}{l}{2x+y=8}\\{x-y=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+3y=-1}\\{3x-2y=8}\end{array}\right.$
(3)$\left\{\begin{array}{l}{4x-3y=11}\\{2x+y=13}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x+y=3}\\{5x-3(x+y)=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,C为⊙O上一点,CD垂直AB于D,把△ACD沿直线AC折叠得到△ACE,AE交⊙O于F点,EC、AB的延长线交于G
(1)求证:CE与⊙O相切;
(2)如果AB=4,∠BAC=30°,求CG、BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.二次函数y=4x2-2mx+n的图象与x轴交于A(x1,0),B(x2,0)两点(x1<x2),与y轴交于C点.
(1)若AB=2,且抛物线顶点在直线y=-x-2上,试确定m,n的值.
(2)在(1)中,若点P为直线BC下方抛物线上一点,当△PBC的面积最大时,求P点坐标.
(3)是否存在整数m,n,使得1<x1<2和1<x2<2同时成立?请说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(-1,0),B(3,0),与y轴相交于点C(0,-3).
(1)求此二次函数的解析式.
(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.
(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知抛物线y=(m-1)x2+(m-2)x-1与x轴交于A、B两点,若m>1,且点A在点B的左侧,OA:OB=1:3
(1)试确定抛物线的解析式;
(2)直线y=kx-3与抛物线交于M、N两点,若△AMN的内心在x轴上,求k的值.
(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,请你结合新图象回答:当直线y=$\frac{1}{3}$x+b与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:秒)的函数解析式是s=6t-4t2,当汽车刹车后到停下来前进了$\frac{9}{4}$米.

查看答案和解析>>

同步练习册答案