精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=-x+2的图象与反比例函数y2= 的图象相交于A,B两点,点B的坐标为(2m,-m).

(1)求出m值并确定反比例函数的表达式;
(2)请直接写出当x<2m时,y2的取值范围.

【答案】
(1)解:∵据题意,点B的坐标为(2m,-m)且在一次函数y1=-x+2的图象上,代入得-m=-2m+2.

∴m=2.

∴B点坐标为(4,-2),

把B(4,-2)代入y2= 得k=4×(-2)=-8,

∴反比例函数表达式为y2=-


(2)解:当x<4,y2的取值范围为y2>0或y2<-2.
【解析】(1)根据点B(2m,-m)在一次函数y1=-x+2的图象上可求出点B的坐标,再由B点在反比例函数y2= 的图象上,可求出k的值,即可得解析式;
(2)由图象可直接写出.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进了一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.在义卖的过程中发现“这种文化衫每天的销售件数y(件)与销售单价x(元)满足一次函数关系:y=﹣3x+108(20<x<36)”.如果义卖这种文化衫每天的利润为p(元),那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.

(1)求证:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线 经过点A(0,2)和B(1, ).
(1)求该抛物线的表达式;
(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;
(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的正整数解是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点在线段.从点出发向点运动,速度为2cm/s;同时,点也从点出发用1s到达处,并在处停留2s,然后按原速度向点运动,速度为4cm/s.最终,点比点1s到达.设点运动的时间为s.

(1)线段的长为 cm;=3s时,两点之间的距离为 cm;

(2)求线段的长;

(3)两点同时出发至点到达点处的这段时间内,为何值时,两点相距1 cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM.

(1)在图1中,当∠ABC=ADC=90°时,求证:AD+AB=AC

(2)若把(1)中的条件ABC=ADC=90°”改为∠ABC+ADC=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(图1) (图2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数 , 下列说法正确的是(  )
A.图象经过点(2,﹣1)
B.图象位于第二、四象限
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线G1:y=ax2+bx+c的顶点为(2,﹣3),且经过点(4,1).

(1)求抛物线G1的解析式;
(2)将抛物线G1先向左平移3个单位,再向下平移1个单位后得到抛物线G2 , 且抛物线G2与x轴的负半轴相交于A点,求A点的坐标;
(3)如果直线m的解析式为 ,点B是(2)中抛物线G2上的一个点,且在对称轴右侧部分(含顶点)上运动,直线n过点A和点B.问:是否存在点B,使直线m、n、x轴围成的三角形和直线m、n、y轴围成的三角形相似?若存在,求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案