精英家教网 > 初中数学 > 题目详情
如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.
(1)证明:∵BD是⊙O的切线,
∴∠DBA=90°,
∵CH⊥AB,
∴CHBD,
∴△AEC△AFD,
AE
AF
=
CE
DF

∴AE•FD=AF•EC.

(2)证明:连接OC,BC,
∵CHBD,
∴△AEC△AFD,△AHE△ABF,
CE
DF
=
AE
AF
AE
AF
=
EH
BF

CE
DF
=
AE
AF
=
EH
BF

∵CE=EH(E为CH中点),
∴BF=DF,
∵AB为⊙O的直径,
∴∠ACB=∠DCB=90°,
∵BF=DF,
∴CF=DF=BF(直角三角形斜边上的中线等于斜边的一半),
即CF=BF.

(3)∵BF=CF=DF(已证),EF=BF=2,
∴EF=FC,
∴∠FCE=∠FEC,
∵∠AHE=∠CHG=90°,
∴∠FAH+∠AEH=90°,∠G+∠GCH=90°,
∵∠AEH=∠CEF,
∴∠G=∠FAG,
∴AF=FG,
∵FB⊥AG,
∴AB=BG,
∵BF切⊙O于B,
∴∠FBC=∠CAB,
∵OC=OA,CF=BF,
∴∠FCB=∠FBC,∠OCA=∠OAC,
∴∠FCB=∠CAB,
∵∠ACB=90°,
∴∠ACO+∠BCO=90°,
∴∠FCB+∠BCO=90°,
即OC⊥CG,
∴CG是⊙O切线,
∵GBA是⊙O割线,AB=BG(已证),
FB=FE=2,
∴由切割线定理得:(2+FG)2=BG×AG=2BG2
在Rt△BFG中,由勾股定理得:BG2=FG2-BF2
∴FG2-4FG-12=0,
解得:FG=6,FG=-2(舍去),
由勾股定理得:
AB=BG=
62-22
=4
2

∴⊙O的半径是2
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.
(1)求∠POQ的大小(用α表示);
(2)设D是CA延长线上的一个动点,DE与圆O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由;
(3)在(2)的条件下,如果AB=m(m为已知数),cosα=
3
5
,设AD=x,DE=y,求y关于x的函数解析式(要指出函数的定义域)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线相交于D,和⊙O相交于E.如果AC平分∠DAB,
(1)求证:∠ADC=90°;
(2)若AB=2r,AD=
8
5
r,求DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA切⊙O于点A,PO交⊙O于点B,∠P=30°,那么弧AB的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)若PC是圆O的切线,BC=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O直径,AC是⊙O弦,点D是
ABC
的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=
4
3
,求AG与GM的比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一圆中,两条弦AB,CD相交于点E,M为线段EB之间的点(不包括E,B).过点D,E,M的圆在点E的切线分别交直线BC,AC于F,G.若
AM
AB
=t
,求
GE
EF
(用t表示).

查看答案和解析>>

同步练习册答案