(2012•盐城二模)如图,在平面直角坐标系中,已知直线AB:y=-
x+3分别与x轴、y轴分别交于点A、点B.动点P、Q分别从O、A同时出发,其中点P以每秒1个点位长度的速度沿OA方向向A点匀速运动,到达A点后立即以原速度沿AO返向;点Q以每秒1个单位长度的速度从A点出发,沿A-B-O方向向O点匀速运动.当点Q到达点O时,P、Q两点同时停止运动.设运动时间为t(秒).
(1)求点A与点B的坐标;
(2)如图1,在某一时刻将△APQ沿PQ翻折,使点A恰好落在AB边的点C处,求此时△APQ的面积;
(3)若D为y轴上一点,在点P从O向A运动的过程中,是否存在某一时刻,使得四边形PQBD为等腰梯形?若存在,求出t的值与D点坐标;若不存在,请说明理由;
(4)如图2,在P、Q两点运动过程中,线段PQ的垂直平分线EF交PQ于点E,交折线QB-BO-OP于点F.问:是否存在某一时刻t,使EF恰好经过原点O?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.