精英家教网 > 初中数学 > 题目详情
4.如图,菱形ABCD的对角线BD长为4$\sqrt{3}$cm,高AE长为2$\sqrt{3}$cm,则菱形ABCD的周长为(  )
A.20cmB.16cmC.12cmD.8cm

分析 由三角形ACB的面积为定值可求出AC=BC,再由菱形的性质可证明△ACB是等边三角形,所以∠ABC=60°,则AB的长可求出,进而可求出菱形ABCD的周长.

解答 解:
设AC和BD相交于点O,

∵四边形ABCD是菱形,
∴BD⊥AC,BO=$\frac{1}{2}$BD=2$\sqrt{3}$cm,AB=BC=CD=AD,
∵高AE长为2$\sqrt{3}$cm,S△ABC=$\frac{1}{2}$AE•BC=$\frac{1}{2}$AC•BO,
∴BC=AC,
∴AC=BC=AB,
∴△ACB是等边三角形,
∴∠ABC=60°,
∵AE=2$\sqrt{3}$cm,
∴AB=4cm,
∴菱形ABCD的周长=4AB=16cm,
故选B.

点评 本题考查了菱形的性质、等边三角形的判定和性质以及三角形面积公式的运用,正确判定△ACB是等边三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=-$\frac{3}{16}a{x}^{2}$+$\frac{5}{8}ax$+3a(a≠0)与x轴交于点A和点B(点A在点B的左侧),与y轴的正半轴交于点C,且OB=OC.
(1)求a的值;
(2)点D为OB中点,点E为OC中点,点F在y轴的负半轴上,点G在线段FD的延长线上,连接GE、ED,若FD=DG,且S△GED=$\frac{27}{2}$,求点G的坐标;
(3)在(2)的条件下,点P在线段OB上,点Q在线段OC的延长线上,且CQ=BP.连接PQ和BC交于点M,连接GM并延长GM交抛物线于点N,连接QN、GP和GB,若∠QPG-∠NQO=∠NQP-∠PGB时,求线段NQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,A,B(点B在点A左边)分别是反比例函数y=$\frac{k}{x}$(x<0)图象上的两,过点A作两坐标轴的垂线,得到正方形ACOD,过点B作x轴和AC的垂线,得到正方形BECP.连接EP和DE,已知△PED的面积为2,则k的值为-6-2$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若关于(k-2)x|k-1|+5=0是一元一次方程,那么k=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,每一个小方格都是边长为1个单位的正方形.△ABC的三个顶点都在格点上,以点O为坐标原点建立平面直角坐标系.
(1)画出△ABC先向左平移3个单位,再向下平移1个单位的△A1B1C1,并写出点B1的坐标(-2,1);
(2)画出将.△ABC绕点O顺时针旋转90°后的△A2B2C2,并求出点A旋转到A2所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.
独立思考:
(1)AE=3cm,△FDM的周长为16cm;
(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.
拓展延伸:
如图2,若点F不是AD的中点,且不与点A、D重合:
①△FDM的周长是否发生变化,并证明你的结论.
②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(m,n).
(1)求C点坐标;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知菱形的边长为$\sqrt{62}$,其中一条对角线长为4$\sqrt{2}$,则这个菱形的面积为24$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在矩形ABCD中,AB=10,BC=5,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为8.

查看答案和解析>>

同步练习册答案