精英家教网 > 初中数学 > 题目详情
(2013•鞍山一模)在平行四边形ABCD中,∠DAB=60°,点E是AD的中点,点O是AB边上一点,且AO=AE,过点E作直线HF交DC于点H,交BA的延长线于F,以OE所在直线为对称轴,△FEO经轴对称变换后得到△F′EO,直线EF′交直线DC于点M.
(1)求证:AD∥OF′;
(2)若M点在点H右侧,OA=4,求DH•DM的值.
分析:(1)根据等腰△AEO的性质得到:∠1=∠2;由对称变换得到∠2=∠3,则内错角∠1=∠3.故AD∥OF′;
(2)根据“两角法”证得△EDH∽△MDE,则该相似三角形的对应边成比例,即
DH
DE
=
DE
DM
,所以DH•DM=DE2=42=16.
解答:(1)证明:如图,∵AO=AE,
∴∠1=∠2.
又∵以OE所在直线为对称轴,△FEO经轴对称变换后得到△F′EO,
∴∠2=∠3,
∴∠1=∠3,
∴AD∥OF′;

(2)解:如图,∵点E是AD的中点,AO=AE,OA=4,
∴DE=AE=OA=4.
∵在?ABCD中,DC∥AB,
∴∠5=∠F.
∵由(1)知,AD∥OF′,
∴∠DEM=∠4.
又∵∠4=∠F,
∴∠5=∠DEM,
又∵∠EDH=∠MDE,
∴△EDH∽△MDE,
DH
DE
=
DE
DM
,即DH•DM=DE2=42=16.
∴DH•DM的值是16.
点评:本题考查了平行四边形的性质、相似三角形的判定与性质以及轴对称的性质.此题难度较大,在证明三角形相似时,一定要找准对应角和对应边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•鞍山一模)李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=
3
时,n=
4-2
3
4-2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)如图1,AB为⊙O的直径,点C是⊙O上一点,∠BAC=30°,点D是AC边上一点,BC=DC,以DC为一边作等边三角形DCE.
(1)求证:BD=OE;
(2)将△DCE绕点C顺时针旋转α(0°<α<60°)得到△D1CE1(如图2),判断BD1与OE1是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)尺规作图(保留作图痕迹)
(1)如图1,△ABC是等边三角形,过点A作出BC边上的高;
(2)如图2,△ABC为任意三角形,过点B作BD⊥AC于点D;
(3)如图3,现在有一块直角三角形钢板,∠ABC=90°,AC=10,AB=6,工人师傅想用它裁出面积最大的△ABP,且∠APB=60°,请在图中画出符合要求的点P(尺规作图,保留作图痕迹)并求出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)如图,在平面直角着坐标系中,一次函数y=
3
x+3
3
的图象与x轴交与点A,与y轴交与点B,点C为x轴上一点,且满足AB=BC.
(1)求点C的点坐标.
(2)若点P是线段BC延长线上一动点,连接AP,作线段AP的垂直平分线,交AP于点D,交y轴于点E,连接EA,EP,EC,EC交AP于点F.
①点P在移动过程中,∠AEP的角度是否发生变化?为什么?
②若S△AEF-S△CFP=2
3
,求直线AP的解析式.

查看答案和解析>>

同步练习册答案