【题目】在平面直角坐标系中,已知A(1,1)、B(3,5),要在x轴上找一点P,使得△PAB的周长最小,则点P的坐标为 .
【答案】(0,2).
【解析】
试题解析:∵线段AB的长度是确定的,
∴△PAB的周长最小就是PA+PB的值最小,
∵3<5,
∴点P在y轴上,
如图1,作点A关于y轴的对称点A′,连接A′B交y轴于点P,
∵A(1,1),
∴A′(-1,1),
设直线A′B的解析式为y=kx+b(k≠0),
∴,解得,
∴直线A′B的解析式为y=x+2,
当x=0时,y=2,
∴P(0,2).
A′B=;
如图2,作点A关于x轴的对称点A′,连接A′B交y轴于点P,
∵A(1,1),
∴A′(1,-1),
设直线A′B的解析式为y=kx+b(k≠0),
∴,解得,
∴直线A′B的解析式为y=3x-4,
当y=0时,x=,
∴P(,0).
A′B=.
∵<.
故点P的坐标为(0,2).
科目:初中数学 来源: 题型:
【题目】如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:
甲:作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;
乙:作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.
对于甲、乙两人的作法,下列判断何者正确( )
A. 两人都正确 B. 两人都错误 C. 甲正确,乙错误 D. 甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,抛物线与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆慢车从甲地匀速行使至乙地,一辆快车同时从乙地匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(h)的对应关系如图所示,当两车相距300km时,x为________h.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com