精英家教网 > 初中数学 > 题目详情
如图,已知梯形ABCD中,BC∥AD,AD=3,BC=6,高h=2,P是BC边上的一个动点,直线m过P点,且m∥DC交梯形另外一边于E,若BP=x,梯形位于直线m左侧的图形面积为y.
(1)当3<x≤6时,求y与x之间的关系式;
(2)当0≤x≤3时,求y与x之间的关系式;
(3)若梯形ABCD的面积为S,当y=
12
S
时,求x的值.
分析:(1)当3<x≤6时,直线m左侧的图形是梯形,根据梯形的面积公式即可求解;
(2)当0≤x≤3时,直线m左侧的图形是三角形,根据三角形面积公式即可求解;
(3)应该分为两种,3<x≤6.和0≤x≤3两种情况进行讨论,根据y=
1
2
S
,以及(1)(2)中得到的函数关系式,即可得到一个关于x的方程,即可求得x的值.
解答:解:(1)y=
h
2
{x+3-(6-x)}=
h
2
(2x-3)=2x-3;

(2)当0≤x≤3时,h=
2
3
x,
y=
1
2
xh=
1
3
x2

(3)应该分为两种,3<x≤6.
0≤x≤3 时,
h
2
(2x-3)=(6-x)h
h约去得:x=
15
4

在3<x≤6所以
1
2
xh=(6-x)h
h约去解得:x=4,不在0≤x≤3,所以是不对,
所以正确的是x=
15
4
点评:随着P点在BC上运动,梯形位于直线m左侧的图形形状也发生改变,故解本例的关键是分类讨论及梯形常用辅助线的添出.
注削弱证明的难度,赋以点(或线)运动,在动态过程中解几何问题,这是近年中考试题中几何问题的一个显著特点,这类问题需要动态分材.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,点P从点A开始沿AB边向点B以3cm/s的速度移动,点Q从点B开始沿BC边向点C以1cm/s的速度移动,P,Q分别从A,B同时出发,当其中一精英家教网点到达终点时,另一点也随之停止.过Q作QD∥AB交AC于点D,连接PD,设运动时间为t秒时,四边形BQDP的面积为s.
(1)用t的代数式表示QD的长.
(2)求s关于t的函数解析式,并求出运动几秒梯形BQDP的面积最大?最大面积是多少?
(3)连接QP,在运动过程中,能否使△DPQ为等腰三角形?若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•遂宁)如图,已知等腰△ABC的面积为4cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为
3
3
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

同步练习册答案