精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,AB=3,BC=6,将矩形沿AC折叠,点D落在D'处,则重叠部分△AFC的面积是多少?

解:根据翻折的性质可知:AB=CD′,∠AFB=∠CFD′,∠B=∠D′,
∴△CFD′≌△AFB,
∴BF=D′F,
设D′F=x,则FC=6-x,
在Rt△CFD′中,CF2=D′F2+CD′2,即为(6-x)2=x2+32
解之得:x=
∴FC=BC-FB=6-=
所以S△AFC=•AB•FC=×3×=
分析:因为AB为FC边上的高,要求△AFC的面积,求得FC即可,先证△CFD′≌△AFB,得BF=D′F,设D′F=x,则在Rt△CFD′中,根据勾股定理求x,而FC=BC-BF.
点评:本题考查了翻折变换的知识及勾股定理的正确运用,本题中设D′F=x,根据直角三角形CFD′中运用勾股定理求x是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案