精英家教网 > 初中数学 > 题目详情

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个实数根,则x1+x2=数学公式、x1•x2=数学公式,这个定理叫做韦达定理. 如:x1、x2是方程x2+2x-1=0的两个实数根,则x1+x2=-2、x1•x2=-1. 若x1,x2是方程数学公式的两个实根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示);
(2)数学公式的值(用含有m的代数式表示);
(3)若数学公式,试求m的值.

解:(1)∵x1,x2是方程2x2+(m-1)x-m=0的两个实根,
∴x1+x2=-,x1•x2==-

(2)x12+x22=(x1+x22-2x1•x2=(-2-2×(-)=

(3)∵(x1-x22=(x1+x22-4x1•x2=(-2-4×(-)==1,
解得:m1=1,m2=-3,
当m=1时,原方程为:2x2-=0,△=4>0,符合题意;
当m=-3时,原方程为:2x2-4x+=0,△=4>0,符合题意;
∴m的值为1或-3.
分析:(1)由x1,x2是方程2x2+(m-1)x-m=0的两个实根,根据根与系数的关系可得x1+x2=-,x1•x2==-
(2)由x12+x22=(x1+x22-2x1•x2,将(1)代入即可求得答案;
(3)由(x1-x22=(x1+x22-4x1•x2,将(1)代入即可得方程:=1,继而求得m的值.
点评:此题考查了一元二次方程根与系数的关系以及根的判别式.此题难度较大,注意掌握若二次项系数不为1,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=知识的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程x2+mx-2m=0的两个根.(其中m≠0)试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).[提示:x12+x22=(x1+x22-2x1x2]
(3)若
x1
x2
+
x2
x1
=1
,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个实数根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理. 如:x1、x2是方程x2+2x-1=0的两个实数根,则x1+x2=-2、x1•x2=-1. 若x1,x2是方程2x2+(m-1)x-
1
2
m=0
的两个实根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示);
(2)
x
2
1
+
x
2
2
的值(用含有m的代数式表示);
(3)若(x1-x2)2=1,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程2x2+mx-2m+1=0的两个根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).
(3)若(x1-x22=2,试求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程2x2+mx-2m+1=0的两个根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).
(3)若(x1-x22=2,试求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个实数根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理. 如:x1、x2是方程x2+2x-1=0的两个实数根,则x1+x2=-2、x1•x2=-1. 若x1,x2是方程2x2+(m-1)x-
1
2
m=0
的两个实根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示);
(2)
x21
+
x22
的值(用含有m的代数式表示);
(3)若(x1-x2)2=1,试求m的值.

查看答案和解析>>

同步练习册答案