精英家教网 > 初中数学 > 题目详情
(2012•通州区一模)已知二次函数y=-x2+2ax-4a+8
(1)求证:无论a为任何实数,二次函数的图象与x轴总有两个交点.
(2)当x≥2时,函数值y随x的增大而减小,求a的取值范围.
(3)以二次函数y=-x2+2ax-4a+8图象的顶点A为一个顶点作该二次函数图象的内接正三角形AMN(M,N两点在二次函数的图象上),请问:△AMN的面积是与a无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
分析:(1)利用一元二次方程根的判别式进行判断,若△>0,则-x2+2ax-4a+8=0有两个不相等的实数根,即
二次函数的图象与x轴总有两个交点,据此可求出a的取值范围.
(2)将二次函数解析式转化为顶点式,找到对称轴,根据对称轴在x=2的左侧或与x=2重合得到a≤2.
(3)解法一:正三角形的面积只与二次函数图形的开口大小有关,二次函数y=-x2+2ax-4a+8的图象可以看做是二次函数y=-x2的图象通过平移得到的,于是研究y=-x2的图象与正三角形△A'M'N'的面积即可,计算出M′N′H和A′B′即可计算三角形的面积为定值;
解法二:根据抛物线和正三角形的对称性,可知MN⊥y轴,利用三角函数求出AB=
3
BM
,设M(m,n),得到BM=a-m(m<a),AB=yA-yB=a2-4a+8-n,计算出它们的值,利用三角形面积公式计算出面积为定值.
解答:解:(1)∵△=4a2-16a+32=4(a-2)2+16,
无论a为何实数△=4(a-2)2+16>0,
∴抛物线与x轴总有两个交点.

(2)∵y=-x2+2ax-4a+8,
∴y=-(x-a)2+a2-4a+8,
∴由题意得,对称轴在x=2的左侧或与x=2重合,
故a≤2.

(3)如图:

解法一:以二次函数y=-x2+2ax-4a+8图象的顶点A为一个顶点作该二次函数图象的内接正三角形AMN(M,N两点在二次函数的图象上),
这个正三角形的面积只与二次函数图形的开口大小有关.
二次函数y=-x2+2ax-4a+8的图象可以看做是二次函数y=-x2的图象通过平移得到的.
如图,正三角形AMN的面积等于正三角形△A'M'N'的面积.
因此,与a的取值无关,
∵点A',M,'N'在二次函数y=-x2的图象上,
∴A'(0,0),M'(-m,-m2),N'(m,-m2),B'(0,-m2),B'N'=m,A′B′=
3
m

∵点N'在y=-x2的图象上,
∴A'B'=m2
m2=
3
m

m=0,或m=
3
m=0(舍去),
m=
3

M′N′=2
3
,A'B'=3,
△A′M′N′=
1
2
M′N′×A′B′=
1
2
2
3
×3=3
3

∴正三角形AMN的面积是与a无关的定值,定值为3
3

解法二:根据抛物线和正三角形的对称性,可知MN⊥y轴,
设抛物线的对称轴与MN交于点B,则AB=
3
BM

设M(m,n),
∴BM=a-m(m<a),
又AB=yA-yB=a2-4a+8-n
=(a2-4a+8)-(-m2+2am-4a+8)
=a2-2ma+m2
=(a-m)2

(a-m)2=
3
(a-m)

a-m=
3

BM=
3
,AB=3,
S△AMN=
1
2
AB×2BM=
1
2
×3×2×
3
=3
3

∴正三角形AMN的面积是与a无关的定值.
点评:本题考查了二次函数与x轴的交点问题、根的判别式、对称轴与不等式、二次函数的平移、正三角形的性质等知识,综合性强,思维含量高,需要同学们加强练习,方能正确解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•通州区一模)某地区准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为
4
5
,则坡面AC的长度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)已知四边形ABCD,点E是射线BC上的一个动点(点E不与B、C两点重合),线段BE的垂直平分线交射线AC于点P,连接DP,PE.
(1)若四边形ABCD是正方形,猜想PD与PE的关系,并证明你的结论.
(2)若四边形ABCD是矩形,(1)中的PD与PE的关系还成立吗?
不成立
不成立
(填:成立或不成立).
(3)若四边形ABCD是矩形,AB=6,cos∠ACD=
3
5
,设AP=x,△PCE的面积为y,当AP>
1
2
AC时,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形△ABC,点A在圆内,且AC恰好经过点O,其中BC=12,OA=8,则BD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)解不等式组
2x+5>1
3x-4≤5
,并写出它的整数解.

查看答案和解析>>

同步练习册答案