
(1)证明:过P作PG⊥BD于G,
∵BD⊥AC,PF⊥AC,
∴PG∥DF,GD∥PF(垂直于同一条直线的两条直线互相平行),
∴四边形PGDF是平行四边形(两条对边互相平行的四边形是平行四边形);
又∵∠GDF=90°,
∴四边形PGDF是矩形(有一个角是直角的平行四边形是矩形),
∴PF=GD(矩形的对边相等)①
∵四边形PGDF是矩形
∴PG∥DF,即PG∥AC,
∴∠BPG=∠C(两条直线平行,同位角相等),
又∵AB=AC(已知)
∴∠ABC=∠C(等腰三角形的两底角相等),
∴∠BPG=∠ABC(等量代换)
∵∠PEB=∠BGP=90°(已证),BP=PB
∴△BPE≌△PBG(AAS)
∴PE=BG②
①+②:PE+PF=BG+GD
即PE+PF=BD=a;
(2)解:结论:PE-PF=CD.理由如下:
过点C作CG⊥PE于G,

∵PE⊥AB,CD⊥AB,
∴∠CDE=∠DEG=∠EGC=90°.
∴四边形CGED为矩形.
∴CD=GE,GC∥AB.
∴∠GCP=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠FCP=∠ACB=∠B=∠GCP.
在△PFC和△PGC中,
∵

,
∴△PFC≌△PGC.
∴PF=PG.
∴PE-PF=PE-PG=GE=CD=a.
分析:(1)根据已知,过P作PG⊥BD于G,可得矩形PGDF,所以PF=GD①,再由矩形PGDF得PG∥AC,又由AB=AC得∠ABC=∠C,所以∠BPG=∠ABC,再∵∠PEB=∠BGP=90°,BP=PB,则△BPE≌△PBG,所以得PE=BG②,①+②得出PE+PF=BD=a;
(2)过点C作CG⊥PE于G,则四边形CGED为矩形,得到CD=EG,同理可证△PGC≌△CFP,则PF=PG,所以PE-PF=PE-PG=GE=CD=a.
点评:此题考查的知识点是全等三角形的判定与性质及等腰三角形的性质,关键是作辅助线证矩形PGDF,再证△BPE≌△PBG.