精英家教网 > 初中数学 > 题目详情
22、如图,△ABC中,点D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.已给的图形中存在哪几对相似三角形?请选择一对进行证明.
分析:图中有两对相似三角形:(1)△ADE∽△AEC或(2)△BCD∽△ACB;
(1)首先由∠BDC=60°、CE⊥DE证得CD=2DE,由此可得出AD=DE,即∠DAE=∠DEA=30°,即可证得∠DEA=∠ECA=30°,加上公共角∠EAC,即可判定两个三角形相似;
(2)同(1)可证得∠EAC=∠ECA=30°,进一步可证得∠EBA=∠EAB=15°;由此可得出AE=BE=CE,即△CEB是等腰Rt△;则∠CBE=45°=∠BAC,再加上公共角∠BCD,即可判定两个三角形相似.
解答:解:
图中相似三角形有△ADE∽△AEC或△BCD∽△ACB两对.(2分)
证明(1)△ADE∽△AEC.
∵CE⊥BD于E,
∴∠CED=90°.
∵∠BDC=60°,
∴∠ECD=30°.
∴CD=2ED.(3分)
∵CD=2AD,
∴AD=ED.(4分)
∴∠DEA=∠DAE.
∵∠BDC=60°,
∴∠DEA=∠DAE=30°,
∴∠DEA=∠ECD=30°.(5分)
∵∠DAE=∠EAC,
∴△ADE∽△AEC.(6分)

证明(2)△BCD∽△ACB
提示:在证明△BCD∽△ACB时
证出①AE=CE,(给1分)
②AE=BE,(给到2分)
③∠CBD=45°,(给到3分)
④△BCD∽△ACB.(给到4分)
点评:此题主要考查的是相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为AB边上的一点,点F为BC延长线上一点,DF交AC于点E.下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D在BC上,点E在AB上,BD=BE,下列四个条件中,不能使△ADB≌△CEB的条件是(  )

查看答案和解析>>

同步练习册答案