精英家教网 > 初中数学 > 题目详情

作业宝如图,矩形ABCD中,AD=8,AB=4,将矩形ABCD沿着对角线BD折叠,得到△A′BD,A′D交BC于点E,求CE的长.

解:如图,∵矩形ABCD,∴∠ADB=∠CBD,
又由折叠知,∠BDA'=∠ADB,
∴∠BDA'=∠CBD,
∴BE=DE,
设CE=x,则DE=BE=8-x,
在RT△DCE中,由勾股定理得:(8-x)2=x2+42
解得:x=3,即CE=3.
分析:根据翻折变换的性质得出∠BDA'=∠CBD,即可得出BE=DE,再利用勾股定理求出即可.
点评:此题主要考查了翻折变换的性质以及勾股定理等知识,根据已知得出BE=DE是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案