精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,点A的坐标是(0,2),过点A作直线l垂直y轴,点B是直线l上异于点A的一点,且∠OBA=α.过点B作直线l的垂线m,点C在直线m上,且在直线l的下方,∠OCB=2α.设点C的坐标为(x,y).
(1)判断△OBC的形状,并加以证明;
(2)直接写出y与x的函数关系式(不要求写自变量的取值范围);
(3)延长CO交(2)中所求函数的图象于点D.求证:CD=CO•DO.

解:(1)△OBC为等腰三角形.
证明:如图1,∵AB⊥BC,
∴∠ABC=90°.
∵∠OBA=α,
∴∠CBO=90°-α.
∵∠OCB=2α,
∴∠BOC=90°-α=∠CBO.
∴BC=OC.
∴△OBC为等腰三角形.

(2)∵l⊥y轴,m⊥l,点A的坐标是(0,2),点C的坐标为(x,y),
∴B(x,2),
∵由(1)知,BC=OC,
=|2-y|,整理得到y=-x2+1.
∴y与x的函数关系式为y=-x2+1.

(3)证明:如图2,设直线OC的解析式为y=kx(k≠0).
根据题意知,点C、D是过原点的直线OC与抛物线y=-x2+1的两个交点.故可设C(x1,kx1),D(x2,kx2).
显然,x1、x2是关于x的方程kx=-x2+1,即x2+kx-1=0的两个根.
∴由韦达定理,得x1+x2=-4k,x1•x2=-4,
∴x1-x2=(x1+x22-4x1•x2===4
∵CD==|x1-x2|•,CO=,DO=

=====1,
∴CD=CO•DO.
分析:(1)△OBC为等腰三角形.利用余角的定义求得∠CBO=90°-α.根据△BOC的内角和定理求得∠BOC=90°-α=∠CBO.则由“等角对等边”证得BC=OC,即△OBC为等腰三角形;
(2)如图1,根据点A、C的坐标易求B(x,2),则由(1)中的BC=OC可以列出x、y的关系式;
(3)根据题意知,点C、D是过原点的直线OCy=kx(k≠0)与抛物线y=-x2+1的两个交点.故可设C(x1,kx1),D(x2,kx2).所以根据两点间的距离公式可以求得线段CD、CO、DO,并求得=1,所以易证得结论.
点评:本题考查了二次函数综合题.其中涉及到了待定系数法求二次函数的解析式、两点间的距离公式、等腰三角形的判定等知识点.解答(3)题时,本题采用了代数法证得结论,当然也可以利用几何法来证得.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案