精英家教网 > 初中数学 > 题目详情
观察发现】如图1,△ABC和△CDE都是等边三角形,且点B、C、E在一条直线上,连接BD和AE,BD、AE相交于点P,猜想线段BD与AE的数量关系,以及BD与AE相交构成的锐角的度数.(只要求写出结论,不必说出理由)
深入探究】如图2,将△CDE绕点C逆时针旋转一定的角度,其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请说明理由
拓展应用】如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,求边CD的长度.
考点:全等三角形的判定与性质,等边三角形的性质
专题:
分析:【观察发现】根据等边三角形的性质可得AB=AC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACE=∠BCD,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得BD=AE,根据全等三角形对应角相等可得∠AEC=∠BDC,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DPE=∠DCE;
【深入探究】根据等边三角形的性质可得AB=AC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACE=∠BCD,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得BD=AE,根据全等三角形对应角相等可得∠AEC=∠BDC,然后根据三角形的内角和定理求出∠DPE=∠DEC;
【拓展应用】把△ACD绕点C逆时针旋转60°得到△BCE,连接DE,判断出△CDE是等边三角形,根据等边三角形的性质可得DE=CD,∠CED=60°,再求出∠BED=90°,然后利用勾股定理列式求出DE,从而得解.
解答:解:【观察发现】∵△ABC和△CDE都是等边三角形,
∴AB=AC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠ACE=∠BCD,
在△ACE和△BCD中,
AB=AC
∠ACE=∠BCD
CD=CE

∴△ACE≌△BCD(SAS),
∴BD=AE,∠AEC=∠BDC,
由三角形的外角性质,∠DPE=∠AEC+∠BDC,
∠DCE=∠BDC+∠DBC,
∴∠DPE=∠DCE=60°;

【深入探究】:结论BD=AE,∠DPE=60°还成立.
∵△ABC和△CDE都是等边三角形,
∴AB=AC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠ACE=∠BCD,
在△ACE和△BCD中,
AB=AC
∠ACE=∠BCD
CD=CE

∴△ACE≌△BCD(SAS),
∴BD=AE,∠AEC=∠BDC,
∵∠BDC+∠CDE+∠AED=∠AEC+∠CDE+∠AED=∠CDE+∠CED=120°,
∴∠DPE=180°-(∠BDC+∠CDE+∠AED)=180°-120°=60°;
∠DCE=∠BDC+∠DBC,
∴∠DPE=∠DCE=60°;

【拓展应用】如图,∵AB=BC,∠ABC=60°,
∴△ABC是等边三角形,
把△ACD绕点C逆时针旋转60°得到△BCE,连接DE,
则BE=AD,△CDE是等边三角形,
∴DE=CD,∠CED=60°,
∵∠ADC=30°,
∴∠BED=30°+60°=90°,
在Rt△BDE中,DE=
BD2-BE2
=
102-62
=8,
∴CD=DE=8.
点评:本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟记性质与判定方法是解题的关键,难点在于【拓展应用】作出辅助线构造成等边三角形和直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,cosB=
2
3
,则a:b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若(x+y)2=8,(x-y)2=3.
求:(1)xy的值;(2)x2+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(18a3-14a2+6a)÷2a.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把△ABC向右平移5格,再向上平移4格平移得到△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=5米,AB=10米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.
(1)当t为何值时,△AMN的面积为6米?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在等式y=kx+b中,当x=2时,y=1;当x=1时,y=2.求k、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,将△DEF如图摆放,使得∠D的两条边分别经过点B和点C.
(1)当将△DEF如图1摆放时,则∠ABD+∠ACD=
 

(2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由;
(3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论
 
.(填“能”或“不能”)

查看答案和解析>>

科目:初中数学 来源: 题型:

在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,依次连接各边中点得到的四边形EFGH.
(1)这个四边形EFGH的形状是
 

(2)请证明你的结论.

查看答案和解析>>

同步练习册答案