精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c<0,△<0;③c-4b>0;④4a-2b+c=16a+4b+c.其中正确结论的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
解答:①根据图象知,该二次函数的图象的开口向上,
∴a>0;
又∵对称轴x=-=1,即b=-2a<0,
∴b<0;
故本选项错误;
②∵该二次函数图象与y轴交于负半轴,
∴c<0;
又∵该图象与x轴有两个不相同的交点,
∴△>0;
故本选项错误;
③根据图象知,当x=-2时,y>0,
∴4a-2b+c>0;
由①知,2a=-b,
∴c-4b>0;
故本选项正确;
④根据该二次函数图象的对称轴x=1可知,x=-2与x=4时,所对应的y值相等,
即4a-2b+c=16a+4b+c;
故本选项正确;
综上所述,正确结论的个数是2个;故选B.
点评:本题主要考查图象与二次函数系数之间的关系,根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=-2时,应有y>0、当x=-2与x=4时,所对应的y值相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案