精英家教网 > 初中数学 > 题目详情
如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为
3
3
分析:根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得
AD
CF
=
DF
EF
,再根据直角三角形30°角所对的直角边等于斜边的一半可得DF=
1
2
EF,然后代入数据进行计算即可得解.
解答:解:∵∠DFE=60°,
∴∠1+∠2+60°=180°,
∴∠2=120°-∠1,
在等边△ABC中,∠A=∠C=60°,
∴∠A+∠1+∠3=180°,
∴∠3=180°-∠A-∠1=120°-∠1,
∴∠2=∠3,
又∵∠A=∠C,
∴△ADF∽△CFE,
AD
CF
=
DF
EF

∵FD⊥DE,∠DFE=60°,
∴∠DEF=90°-60°=30°,
∴DF=
1
2
EF,
又∵AF=2,AC=8,
∴CF=8-2=6,
AD
6
=
1
2

解得AD=3.
故答案为:3.
点评:本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案