分析 (1)先作∠BAC的平分线l,再过点C作CF⊥l交AB于F,则可得到点C和F点关于l对称,所以l为所作;
(2)连结DF,如图,利用等腰三角形的判定方法得到AF=AC,则AD垂直平分CF,所以DF=DC,则∠DCF=∠DFC,再利用三角形外角性质得∠BDF=2∠DCF,接着证明∠B=2∠BCF,于是得到∠B=∠BDF,则FB=FD=CD,则易得AB=AF+FB=AC+CD.
解答 解:(1)如图,直线l为所作;![]()
(2)AB=AC+CD.理由如下:
连结DF,如图,
∵AD平分∠BAC,AD⊥CF,
∴AF=AC,
∴AD垂直平分CF,
∴DF=DC,
∴∠DCF=∠DFC,
∴∠BDF=∠DCF+∠DFC=2∠DCF,
∵∠AFC=∠ACF,
∵∠AFC=∠B+∠BCF,
∴∠ACF=∠B+∠BCF,
∵∠ACB=2∠B,
∴2∠B-∠BCF=∠B+∠BCF,
∴∠B=2∠BCF,
∴∠B=∠BDF,
∴FB=FD,
∴FB=CD,
∴AB=AF+FB=AC+CD.
点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.
科目:初中数学 来源: 题型:选择题
| A. | 109 | B. | 85 | C. | 72 | D. | 66 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$,4 | B. | $\frac{3}{4}$,2 | C. | $\frac{3π}{4}$,3 | D. | $\frac{3π}{4}$,2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | -$\frac{13}{6}$ | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 比m少1的数除以n | B. | (m-1)的$\frac{1}{n}$ | ||
| C. | 比$\frac{m}{n}$少1的数 | D. | m与1的差除以n的商 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com