精英家教网 > 初中数学 > 题目详情

如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是(     )

A.AB=AC     B.∠BAE=∠CAD       C.BE=DC     D.AD=DE


D【考点】全等三角形的性质.

【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.

【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,

∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,

故A、B、C正确;

AD的对应边是AE而非DE,所以D错误.

故选D.

【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


.如图:某地有两所大学和两条相交叉的公路(点M,N表示大学,AO,BO表示公路).现计划修建一座仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案(要求保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:


计算(2014×1.52015×(﹣1)2016的结果是(     )

A.      B.      C.﹣  D.﹣

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.

实验与探究:

(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′__________、C′__________

归纳与发现:

(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为__________(不必证明);

运用与拓广:

(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:


运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为(     )

A.     B.

C.     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


写出“到线段两端距离相等的点在线段的垂直平分线上”的逆命题:__________

查看答案和解析>>

科目:初中数学 来源: 题型:


=

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC是等边三角形,D是BC的中点,点E在AC上,且AE=AD,则∠EDC=(     )

A.15°   B.18°    C.20°   D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:


问题提出:求边长分别为(a为正整数)三角形的面积.

  问题探究:为解决上述数学问题,我们采取数形结合和转化的思想方法,并采取一般问题特殊化的策略来进行探究.

  探究一:当a=1时,求边长分别为三角形的面积.

  先画一个正方形网格(每个小正方形的边长为1),再在网格中画出边长分别为的格点三角形△ABC(如图①).

  因为AB是直角边分别为2和1的Rt△ABE的斜边,所以AB=

  因为BC是直角边分别为1和3的Rt△BCF的斜边,所以BC=

  因为AC是直角边分别为3和2的Rt△ACG的斜边,所以AC=;通过面积转化,可间接求三角形△ABC的面积.

  所以,SABC=S正方形EFCG﹣SABE﹣SBCF﹣SACG

(1)直接写出图①中SABC=__________

  探究二:当a=2时,求边长分别为2,5三角形的面积.

  先画一个长方形网格(每个小长方形的长为2,宽为1),再在网格中画出边长分别为2,5的格点三角形△ABC(如图②).

  因为AB是直角边分别为2和2的Rt△ABE的斜边,所以AB=2

  因为BC是直角边分别为1和6的Rt△BCF的斜边,所以BC=

  因为AC是直角边分别为3和4的Rt△ACG的斜边,所以AC=5,通过面积转化,可间接求三角形△ABC的面积.

  所以,SABC=S正方形EFCG﹣SABE﹣SBCF﹣SACG

(2)直接写出图②中SABC=__________

  探究三:当a=3时,求边长分别为,3三角形的面积.

  仿照上述方法解答下列问题:

(3)画的长方形网格中,每个小长方形的长应是__________

(4)边长分别为,3的三角形的面积为__________

问题解决:求边长分别为(a为正整数)三角形的面积.

(5)类比上述方法画长方形网格,每个小长方形的长应是__________

(6)边长分别为(a为正整数)的三角形的面积是__________

查看答案和解析>>

同步练习册答案