精英家教网 > 初中数学 > 题目详情

点M是四边形ABCD的边BC的中点,∠AMD=120°.
求证:AB+数学公式+CD≥AD.

证明:如图,作出点B关于AM的对称点B′,点C关于MD的对称点C′,连接AB′、B′C′、C′D、B′M、C′M,
根据轴对称的性质可得AB′=AB,BM=B′M,CM=C′M,C′D=CD,∠AMB=AMB′,∠DMC=∠DMC′,
∵∠AMD=120°,
∴AMB+∠DMC=180°-∠AMD=180°-120°=60°,
∴∠B′MC′=∠AMD-(∠AMB′+∠DMC′)=120°-60°=60°,
∵点M是四边形ABCD的边BC的中点,
∴BM=CM,
∴B′M=C′M,
∴△B′C′M是等边三角形,
∴B′C′=BC,
所有,①当点B′、C′在AD上时,AB+BC+CD=AD,
②当点B′、C′不在AD上时,根据连接两点的所有线中,线段最短,AB+BC+CD>AD,
综上,AB+BC+CD≥AD.
分析:根据对称性,作出点B关于AM的对称点B′,点C关于MD的对称点C′,再连接AB′、B′C′、C′D、B′M、C′M,根据轴对称的性质以及∠AMD=120°可以证明△B′C′M是等边三角形,然后根据连接两点的所有线中,线段最短证明.
点评:本题考查了轴对称的性质,两点间线段最短的性质,作出对称点构造出图形更形象直观,注意证明得到△B′C′M是等边三角形非常关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点E是四边形ABCD的对角线BD上的一点,且∠BAC=∠BDC=∠DAE.
(1)试说明:BE•AD=CD•AE;
(2)根据图形的特点,猜想
BCDE
可能等于哪两条线段的比?并说明你的猜想是正确的.(注:只需写出图中已知线段的一组比即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

25、定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内心.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内心.
(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内心.
(2)分别画出图3平行四边形和图4梯形的准内心.(作图工具不限,不写作法,但要有必要的说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•六盘水)(1)观察发现
   如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
   作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.

   如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
3
3

 (2)实践运用
   如图(3):已知⊙O的直径CD为2,
AC
的度数为60°,点B是
AC 
的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为
2
2


  (3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果四边形一条对角线所在直线上有一点,它到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这个点为这个四边形的准等距点.
(1)正方形ABCD的对角线AC上有没有准等距点?请简单说明理由;
(2)请回答长方形(正方形除外)、菱形、等腰梯形的准等距点的个数(不必证明);
(3)如图所示,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF,证明点P是四边形ABCD的准等距点.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点O是四边形ABCD与A′B′C′D′的位似中心,则
 
=
 
=
 
;∠ABC=
 
,∠OCB=
 

查看答案和解析>>

同步练习册答案