精英家教网 > 初中数学 > 题目详情
“两龙”高速公路是目前我省高速公路隧道和桥梁最多的路段.如图,是一个单心圆曲隧道的截面,若路面AB宽为10米,净高CD为7米,则此隧道单心圆的半径OA是______.
∵OD⊥AB,
∴AD=DB=
1
2
AB=
1
2
×10=5m,
在Rt△OAD中,设半径OA=R,OD=CD-R=7-R,
∴OA2=OD2+AD2,即R2=(7-R)2+52,解得R=
37
7

∴此隧道圆的半径OA是
37
7
m.
故答案为:
37
7
m.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等?若不等,直接写出AP:DF=______;
(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,在正方形ABCD中,O为正方形的中心,∠MON绕着O点自由的转动,角的两边与正方形的边BC、CD交于E、F.若∠MON=90°,正方形的面积等于S.求四边形OECF的面积.(用S表示)
下面给出一种求解的思路,你可以按这一思路求解,也可以选择另外的方法去求.
解:连接OB、OC.∵O为正方形的中心,∴∠BOC=
360
4
=90°,
∵∠MON=90°∴∠FOC+∠EOC=∠EOB+∠EOC=90°.∴∠FOC=∠EOB
(下面请你完成余下的解题过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),O是△ABC的中心,∠MON=120°,正三角形ABC的面积等于S.求四边形OECF的面积.(用S表示)
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X”,正n边形的面积等于S.请你作出猜想:当∠MON=______°时,四边形OECF的面积=______(用S表示,并直接写出答案,不需要证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为(  )
A.5cmB.6cmC.7cmD.8cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,净高CD=9米,则此圆的半径OA=(  )
A.
12
2
B.
13
2
C.
14
2
D.
15
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在⊙O中,弦AB=24,弦CD=10,圆心到AB的距离为5,则圆心到CD的距离为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,⊙O的弦AB、AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM、ON分别交AB、AC于点E、F,则∠MON的度数为(  )
A.110°B.120°C.130°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,圆内两条弦互相垂直,其中一条AB被分成3和4两段,另一条CD被分成2和6两段,求此圆的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,圆弧形桥拱的跨度AB=16米,拱高CD=4米,则拱桥的半径为______米.

查看答案和解析>>

同步练习册答案