精英家教网 > 初中数学 > 题目详情

画一条直线,可将平面分成2个部分,画2条直线,最多可将平面分成4个部分,那么,画6条直线最多可将平面分成________个部分.

22
分析:根据一条直线、两条直线、三条直线的情况可总结出规律,从而可得出答案.
解答:由图可知,
(1)有一条直线时,最多分成2部分;
(2)有两条直线时,最多分成2+2=4部分;
(3)有三条直线时,最多分成1+1+2+3=7部分;

(4)设直线条数有n条,分成的平面最多有m个.有以下规律:
m=1+1+…+(n-1)+n=+1.
∴画6条直线最多可将平面分成+1=22.
故答案为:22.
点评:本题考查直线与平面的关系,有一定难度,注意培养由特殊到一般再到特殊的探究意识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

画一条直线,可将平面分成2个部分,画2条直线,最多可将平面分成4个部分,那么,画6条直线最多可将平面分成
 
个部分.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丰台区一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为
8
5
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省常州市二十四中中考数学模拟试卷(C)(解析版) 题型:解答题

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

查看答案和解析>>

同步练习册答案