精英家教网 > 初中数学 > 题目详情
16.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=4,则线段ON的长为2.

分析 作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH/CO,然后证明△CON∽△CHM,再利用相似比可计算出ON.

解答 解:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=$\frac{\sqrt{2}}{2}AM=\frac{\sqrt{2}}{2}×4=2\sqrt{2}$,
∵CM平分∠ACB,
∴BM=MH=$2\sqrt{2}$,
∴AB=4+2$\sqrt{2}$,
∴AC=$\sqrt{2}$AB=4$\sqrt{2}$+4,
∴OC=$\frac{1}{2}$AC=$\sqrt{2}$+2,CH=AC-AH=4$\sqrt{2}$+4-2$\sqrt{2}$=2$\sqrt{2}$+4,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴$\frac{ON}{MH}=\frac{OC}{CH}$,即$\frac{ON}{2\sqrt{2}}=\frac{\sqrt{2}+2}{2\sqrt{2}+4}$,
∴ON=2,
故答案为:2

点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.在$\sqrt{4}$,3.14,$\frac{3}{11}$,$\sqrt{3}$,$\frac{π}{5}$,0.66666,这6个数中,无理数共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.
(1)求A、B两点的坐标;
(2)证明:当△EFO面积最大时,△EFO∽△CBA.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,线段AB=8,M是线段AB的中点,N是线段AC的中点,C为线段AB上一点,且AC=3.2,求M,N两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,O为直线AB上一点,∠BOC=α.
(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;
(2)若∠AOD=$\frac{1}{3}$∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;
(3)若∠AOD=$\frac{1}{n}$∠AOC,∠DOE=$\frac{180°}{n}$(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各数$\sqrt{2}$、π、$\frac{2}{3}$、$\root{3}{27}$、0.$\stackrel{•}{3}$中,无理数的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.关于x、y的代数式(-3kxy+3y)+(9xy-8x+1)中不含有二次项,则k=(  )
A.3B.$\frac{1}{3}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:$\frac{2}{x+2}$-$\frac{1}{2-x}$=$\frac{4}{{x}^{2}-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.2017年贵阳体育中考即将来临,某中学的体育老师根据该校学生的实际情况,要求学生只从“排球”、“急行跳远”、“篮球”、“跳绳”四个选项中选择自己最擅长的一个项目,该校体育教研组长随机在九年级学生中抽取了若干名学生统计他们的选项情况,并绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次调查中,体育教研组长一共抽查了50名学生;
(2)请将条形统计图补充完整;
(3)求出项目“急行跳远”所在的扇形的圆心角的度数.

查看答案和解析>>

同步练习册答案