精英家教网 > 初中数学 > 题目详情

如图,已知扇形OACB中,∠AOB=60°,弧AB长为4π,⊙Q和弧AB,OA,OB分别相切于点C,D,E,求⊙Q的周长为


  1. A.
  2. B.
  3. C.
  4. D.
    以上都不对
B
分析:先求得OC=12,OQ=12-CQ=12-DQ,再利用含30度角的直角三角形的性质求得DQ=4,从而求得⊙Q的周长为8π.
解答:∵∠AOB=60°,弧AB长为4π
∴OC=12
∴OQ=12-CQ=12-DQ
∵⊙Q和弧AB,OA,OB分别相切于点C,D,E
∴∠QDO=90°,∠DOQ=∠AOB=30°
∴OQ=2DQ
∴12-DQ=2DQ
∴DQ=4
∴⊙Q的周长为8π.
故选B.
点评:此题考查了弧长公式:l=;还考查了圆的切线的性质,垂直于过切点的半径;还考查了直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=
35
,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直径AB垂直弦CD于点E,连接AD、BC、OC,且OC=5.
(1)若sin∠BCD=
35
,求CD的长;
(2)若∠OCD=4∠BCD,求扇形OAC(阴影部分)的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若
BD
AB
=
3
5
,求CD的长.
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积.
(3)若将(2)中扇形卷成一个圆锥,则此圆锥的侧面积.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(77):3.7 弧长及扇形的面积(解析版) 题型:解答题

如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源:第24章《圆(下)》中考题集(54):24.4 圆的有关计算(解析版) 题型:解答题

如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).

查看答案和解析>>

同步练习册答案