精英家教网 > 初中数学 > 题目详情

如图,E、F、G、H分别为正方形ABCD的边AB、BC、CD、DA上的点,且AE=BF=CG=DH=数学公式AB,则图中阴影部分的面积与正方形ABCD的面积之比为________.


分析:先设正方形的边长为a,再求证Rt△AED≌Rt△DHC≌Rt△CGB≌Rt△BFA,再由AE=BF=CG=DH=AB可求出其面积,由相似三角形的判定定理可求出△DHJ、△AEL、△BFN、△CKG是直角三角形,且都全等,再根据S阴影=S□ABCD-4S△AED+4S△AEL计算即可.
解答:解:设正方形的边长为a,则S□ABCD=a2
∵AE=BF=CG=DH=AB,
∴AE=BF=CG=DH=a,
∴AF==a,
∵∠DAE=∠DCB=∠ADC=∠ABC=90°,
∴Rt△AED≌Rt△DHC≌Rt△CGB≌Rt△BFA,
∴S△AED=×a•a=a2
∵Rt△AED≌Rt△BFA,
∴∠EAL=∠ADE,∠AEL=∠BFN,
∴∠ALE=∠DAE=90°,
∴△AEL是直角三角形,
∵∠EAL=∠EAL,∠ALE=∠ABF=90°,
∴Rt△AEL∽Rt△AFB,
==,即==
解得,AL=a,EL=
∴S△AEL=AL•EL=×=
同理可得,S△AEL=S△BNF=S△CKG=S△DHJ=
∴S阴影=S正方形ABCD-4S△AED+4S△AEL=a2-4S△AED+4S△AEL=a2-4×a2+4×=a2
∴阴影部分的面积与正方形ABCD的面积之比为a2:a2=
点评:本题涉及到直角三角形的判定定理、相似三角形的判定及性质、矩形及直角三角形的面积公式,比较复杂,涉及面较广,但难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,已知⊙P的半径OD=5,OD⊥AB,垂足是G,OG=3,则弦AB=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知A,B两点是反比例函数y=
4x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=24,BC=26.先顺次连接矩形各边中点得菱形,又顺次连接菱形各边中点得矩形,再顺次连接矩形各边中点得菱形,照此继续,…,第10次连接的图形的面积是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图是某几何体的三视图,则这个几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若∠C=30°,CD=
3
,求⊙O的半径.

查看答案和解析>>

同步练习册答案