精英家教网 > 初中数学 > 题目详情

【题目】阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).

小明利用同弧所对的圆周角相等这条性质解决了这个问题,下面是他的作图过程:

第一步:分别作ABBC的中垂线(虚线部分),设交点为O

第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)

第三步:在弦BC上方的弧上(异于A点)取一点M,连结MBMC,则∠BMC=∠BAC.(如图2

思考:如图2,在矩形ABCD中,BC6CD10ECD上一点,DE2

1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PBPC.(要求:用直尺与圆规作出点P,保留作图痕迹.)

2)求PC的长.

【答案】(1)详见解析;(2)

【解析】

1)作BC的垂直平分线,交BE于点O,以O为圆心,OB为半径作圆,交垂直平分线于点P,则点P为所求.
2)先根据AD=6CD=10DE=2CE=8BE=10,从而得OB=OP=5,再由BQ=CQ=BC=3OQ=4,再根据勾股定理求解可得.

解:(1)如图所示,点P即为所求:

2)∵CD10DE2

CE8

BCAD6

BE10

OPOB5

BQCQBC3

OQ4

PQ9

PC3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,以AB为直径的圆与BC边交于点D,过点DDFAC,垂足为F,过点FFGAB,垂足为G,连结GD

1)求证:DF是⊙O的切线;

2)若AB12,求FG的长;

3)在(2)问条件下,求点DFG的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,抛物线ya( x4 )216a>0)交x轴于点EFEF的左边),交y轴于点C,对称轴MNx轴于点H;直线yxb分别交xy轴于点AB

1)写出该抛物线顶点D的坐标及点C的纵坐标(用含a的代数式表示).

2)若AF=AH=OH,求证:∠CEO=ABO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一只拉杆式旅行箱如图1,其侧面示意图如图2所示,已知箱体长AB=50 cm,拉杆BC的伸长距离最大时可达35 cm,点ABC在同一条直线上,在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B到水平地面MN的距离为38 cm时,点C到水平面的距离CE59 cm.设AFMNAFCE于点G(精确到1 cm,参考数据:sin64°≈0.90cos64°≈0.39tan64°≈2.1

(1)求⊙A的半径长;

(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE80 cm,∠CAF=64°.求此时拉杆BC的伸长距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知G是直角三角形ABC的内心,∠C=90°,AC=6,BC=8,则线段CG的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O经过点C,过点C作⊙O的切线交AB的延长线于点PD是⊙O上于点,且弧BC=弧CD,弦AD的延长线交切线PC于点E,连接AC

1)求∠E的度数;

2)若⊙O的直径为5sinP,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程mx2﹣(m1x10

1)求证:这个一元二次方程总有两个实数根;

2)若二次函数ymx2﹣(m1x1有最大值0,则m的值为   

3)若x1x2是原方程的两根,且2x1x2+1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点OAECF

(1)求证:BOE≌△DOF

(2)若BDEF,连接DEBF,判断四边形EBFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了贯彻减负增效精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:

(1)本次调查的学生人数是   人;

(2)图2α   度,并将图1条形统计图补充完整;

(3)请估算该校九年级学生自主学习时间不少于1.5小时有   人;

(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.

查看答案和解析>>

同步练习册答案