精英家教网 > 初中数学 > 题目详情
5.已知:如图,∠1=∠3,∠E=∠C,AD=AB,求证:BC=DE.

分析 由三角形的外角性质和已知条件得出∠B=∠ADE,由AAS证明△ABC≌△ADE,得出对应边相等即可.

解答 证明:∵∠ADE+∠3=∠B+∠1,∠1=∠3,
∴∠B=∠ADE,
在△ABC和△ADE中,$\left\{\begin{array}{l}{∠B=∠ADE}&{\;}\\{∠C=∠E}&{\;}\\{AB=AD}&{\;}\end{array}\right.$,
∴△ABC≌△ADE(AAS),
∴BC=DE.

点评 本题考查了全等三角形的判定与性质、三角形的外角性质;熟练掌握三角形的外角性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=20,AC=30,∠BAC=120°,求S△ABC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=ax2+bx-4a与直线y=-x+4交两坐标轴于点B,C,且与x轴交另一点A.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限抛物线的图象上,求点D关于直线BC对称的点D′坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC与△BDE为等边三角形,连接AD,EC,AD中点为M,EC中点为N,BM,BN,MN,求证:△BMN为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,△ABC中,BD、CE分别是AC、AB上的高,BD与CE交于点O.BE=CD
(1)问△ABC为等腰三角形吗?为什么?
(2)连接AO,直线AO是线段BC的垂直平分线吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知△ABC中,∠BAC=90°,四边形ABDE、BCFG是两个正方形,AB的延长线交DG于P,求证:AC=2BP.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知△ABC中,F是高AD和BE的交点,AD=BD,CD=4,AF=3,求DA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.在2,0,-1,-2这四个数中,最小的数是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列是一元一次方程的是(  )
A.x-y=4-2xB.$x-2=\frac{2}{x}$C.$\frac{x}{2}=5x+1$D.x2-4x=3

查看答案和解析>>

同步练习册答案