精英家教网 > 初中数学 > 题目详情
14.在2,0,-1,-2这四个数中,最小的数是(  )
A.-2B.-1C.0D.1

分析 有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在2,0,-1,-2这四个数中,最小的数是哪个即可.

解答 解:根据有理数比较大小的方法,可得
-2<-1<0<2,
故在2,0,-1,-2这四个数中,最小的数是-2.
故选:A.

点评 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,二次函数y=-x2-(2m+2)x-m2-4m+3(m为非负整数)与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)在直线x=-1上找一点P,使△PBC的周长最小,并求出点P的坐标;
(3)点Q在抛物线上,且在第二象限内,设点Q的横坐标为t,问t为何值时,四边形AQCB的面积最大?并求出这个最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,∠1=∠3,∠E=∠C,AD=AB,求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠B=60°,∠BAC、∠ACB的平分线AE、CF相交于点O.求证:
(1)OE=OF;
(2)AF+CE=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为底边向
外作高为AC,BC长的等腰△ACM,等腰△BCN,$\widehat{AC}$,$\widehat{BC}$的中点分别是P,Q.若
MP+NQ=12,AC+BC=15,则AB的长是10.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;…
回答下列问题:
(1)仿照上列等式,写出第n个等式:$\sqrt{n+1}$-$\sqrt{n}$;
(2)利用你观察到的规律,化简:$\frac{1}{2\sqrt{3}+\sqrt{11}}$;
(3)计算:$\frac{1}{{1+\sqrt{2}}}+\frac{1}{{\sqrt{2}+\sqrt{3}}}+\frac{1}{{\sqrt{3}+2}}+…+\frac{1}{{\sqrt{2014}+\sqrt{2015}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知正方形ABCD中,AB=6,点E为AD的中点,连接BE,直线BE绕点E旋转45°,旋转后的直线与直线BD相交于点F,则线段DF的长为$\frac{9\sqrt{2}}{4}$或$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,四边形ABCD中,AD=CD,∠ADB=∠ACB,AC∥DE.求证:AD2=AF•DE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若|x-y+2|+|x+y-6|=0,则x=2,y=4.

查看答案和解析>>

同步练习册答案